Способность к редупликации днк. Что такое редупликация ДНК? Процесс редупликации ДНК. Общие сведения и виды синтеза ДНК

Молекула ДНК — это находящаяся в хромосоме структура. Одна хромосома содержит одну такую молекулу, состоящую из двух нитей. Редупликация ДНК — это передача информации после самовоспроизведения нитей от одной молекулы на другую. Она присуще как ДНК, так и РНК. В данной статье рассматривается процесс редупликации ДНК.

Общие сведения и виды синтеза ДНК

Известно, что нити в молекуле закручены. Однако, когда начинается процесс редупликации ДНК, они деспирализуются, затем отходят в стороны, и на каждой синтезируется новая копия. По завершении появляются две абсолютно идентичные молекулы, в каждой из которых присутствует материнская и дочерняя нити. Такой синтез получил название полуконсервативный. Молекулы ДНК отодвигаются, оставаясь при этом в единой центромере, и окончательно расходятся лишь тогда, когда у этой центромеры начинается процесс деления.

Другой вид синтеза получил название репаративный. Он, в отличие от предыдущего, не связан с какой-либо клеточной стадией, но начинается при возникновении повреждений ДНК. Если они носят слишком обширный характер, то клетка в конце концов погибает. Однако, если повреждения локальны, то их можно восстановить. В зависимости от проблемы восстановлению подлежит отдельная или две сразу цепочки ДНК. Этот, как его еще называют, внеплановый синтез не занимает продолжительного времени и не требует больших энергозатрат.
Но когда происходит редупликация ДНК, то расходуется много энергии, материала, продолжительность его растягивается на часы.
Редупликация делится на три периода:

  • инициацию;
  • элонгацию;
  • терминацию.

Рассмотрим подробнее эту последовательность редупликации ДНК.

Инициация

В ДНК человека — несколько десятков миллионов пар нуклеотидов (у животных их насчитывается всего сто девять). Редупликация ДНК начинается во многих местах цепочки по следующим причинам. Примерно в это же время в РНК происходит транскрипция, но на время синтеза ДНК она приостанавливается в некоторых отдельных местах. Поэтому перед таким процессом в цитоплазме клетки накапливается достаточное количество вещества для того, чтобы поддержать экспрессию генов и чтобы жизнедеятельность клетки не была нарушена. Ввиду этого процесс должен проходить как можно быстрее. Трансляция в этот период осуществляется, а транскрипция не ведется. Как показали исследования, редупликация ДНК происходит сразу в нескольких тысячах точек — небольших участках с определенной последовательностью нуклеотидов. К ним присоединяются специальные инициаторные белки, к которым в свою очередь присоединяются другие ферменты редупликации ДНК.

Фрагмент ДНК, где происходит синтез, называется репликоном. Он начинается от точки начала и заканчивается тогда, когда фермент завершает репликацию. Репликон автономен, а также снабжает весь процесс собственным обеспечением.
Процесс может начаться не со всех точек сразу, где-то он начинается раньше, где-то — позже; может протекать в одном или в двух противоположных направлениях. События происходят в следующем порядке, когда образуются:

  • репликационная вилка;
  • РНК-затравка.

Репликативная вилка

Эта часть представляет собой процесс, при котором на отсоединенных нитях ДНК происходит синтез дезоксирибонуклеиновых нитей. Вилки при этом образуют так называемый глазок редупликации. Процессу предшествует целый ряд действий:

  • освобождение от связи с гистонами в нуклеосоме — такие ферменты редупликации ДНК как метилирование, ацетилирование и фосфорилирование производят химические реакции, в результате которых белки теряют свой положительный заряд, что способствует их высвобождению;
  • деспирализация — это раскручивание, которое необходимо для дальнейшего освобождения нитей;
  • разрыв связей водорода между нитями ДНК;
  • их расхождение в разные стороны молекулы;
  • фиксация, происходящая при помощи белков SSB.

РНК-затравка

Синтез осуществляет фермент, под названием ДНК-полимераза. Однако начать его самостоятельно он не может, поэтому это делают другие ферменты — РНК-полимеразы, которые называют еще РНК-затравками. Они синтезируются параллельно дезоксирибонуклеиновым нитям по Таким образом, инициация заканчивается синтезом двух РНК-затравок на двух разорванных и отошедших в разные стороны нитях ДНК.

Элонгация

Данный период начинается с присоединения нуклеотида и 3" концу РНК-затравки, что осуществляет уже упомянутая ДНК-полимераза. К первому она присоединяет второй, третий нуклеотид, и так далее. Основания новой нити соединяются с материнской цепочкой Считается, что синтез нити идет в направлении 5 "- 3".
Там, где он происходит в сторону репликационной вилки, синтез протекает непрерывно и удлиняется при этом. Поэтому такую нить называют ведущей или лидирующей. На ней РНК-затравки больше не формируются.

Однако на противоположной материнской нити ДНК-нуклеотиды продолжают присоединяться к РНК-затравке, и дезоксирибонуклеиновая цепь синтезируется в противоположном от вилки редупликации направлении. Ее в этом случае называют запаздывающей или отстающей.

На отстающей нити синтез происходит фрагментарно, где по окончании одного участка начинается синтез на другом участке поблизости при помощи все той же РНК-затравки. Таким образом, на запаздывающей цепи имеются два фрагмента, которые соединены ДНК и РНК. Они получили название фрагменты Оказаки.

Далее все повторяется. Тогда расплетается другой виток спирали, разрываются связи водорода, нити расходятся в стороны, ведущая цепь удлиняется, на отстающей синтезируется следующий фрагмент РНК-затравки, после чего — фрагмент Оказаки. После этого на запаздывающей нити РНК-затравки разрушаются, а фрагменты ДНК соединяются в одну. Так на этой цепи происходит одновременно:

  • образование новых РНК-затравок;
  • синтез фрагментов Оказаки;
  • разрушение РНК-затравок;
  • воссоединение в одну единую цепь.

Терминация

Процесс продолжается до тех пор, пока две репликативные вилки не встретятся, или одна из них не подойдет к концу молекулы. После встречи вилок дочерние нити ДНК соединяются ферментом. В случае же, если вилка отошла к концу молекулы, редупликация ДНК заканчивается с помощью специальных ферментов.

Коррекция

В данном процессе важная роль отводится контролю (или коррекции) редупликации. К месту синтеза поступают все четыре вида нуклеотидов, а путем пробного спаривания ДНК-полимераза отбирает те, которые необходимы.

Нужный нуклеотид должен быть способен сформировать столько же связей водорода, сколько аналогичный нуклеотид на матричной нити ДНК. Кроме того, между сахарофосфатными остовами должно быть определенное постоянное расстояние, соответствующее трем кольцам в двух основаниях. Если нуклеотид не соответствует этим требованиям, соединение происходить не будет.
Контроль проводится перед включением его в состав цепи и перед включением последующего нуклеотида. После этого формируется связь в остове сахарофосфата.

Мутационная изменчивость

Механизм редупликации ДНК, несмотря на высокий процент точности, всегда имеет нарушения в нитях, называющихся в основном «генными мутациями». Примерно на тысячу нуклеотидных пар приходится одна ошибка, которая называется конвариантная редупликация.

Она случается по разным причинам. К примеру, при высокой или слишком низкой концентрации нуклеотидов, дезаминирования цитозина, присутствия мутагенов в области синтеза, и другое. В некоторых случаях ошибки могут исправиться репарационными процессами, в других исправление становится невозможным.

Если повреждение коснулось неактивного места, ошибка не будет иметь тяжелых последствий, когда происходит процесс редупликации ДНК. Последовательность нуклеотида того или иного гена может проявиться с ошибкой спаривания. Тогда дело обстоит иначе, и негативным результатом может стать как гибель этой клетки, так и гибель всего организма. Следует также учитывать, что основаны на мутационной изменчивости, которая делает генофонд пластичнее.

Метилирование


В момент синтеза или сразу после него происходит метилирование цепей. Считается, что у человека этот процесс нужен для того, чтобы сформировать хромосомы и регулировать транскрипцию генов. В бактериях данный процесс служит защитой ДНК от разрезания его ферментами. выберите правильные утверждения: 1.белки составляют большую часть веществ клетки 2.при расщеплении одинакового кол-ва жира и углеводов

выделяется равное кол-во энергии

3.пептидной называют связь между углеродом карбоксильной группы и азотом аминогруппы в молекуле белка

4.основная функция рибосом участие в биосинтезе белка

5.в основе селекционного процесса лежит естественный отбор

6.в неделящейся клетке нет хромосом

7. количество митохондрий и пластид может увеличиваться только путем деления этих органоидов

8.вакуоли имеются только в растительных клетках

9.по принципу комплементарности комплементарными являются А-У и Г-Ц

10.спиртовое брожение может проходить только в отсутствии кислорода

11.ассимиляция и диссимиляция составляют энергетический обмен в организме

12.мейоз происходит в семенниках человека в зоне размножения

13.гамета всегда содержит только один ген

14.норма реакции наследуется

15.внешняя среда не может изменить характер формирования признака

Помогите! Вопросов много, ничего не успеваю.. Ответьте хотя бы на то, что знаете

81. Энергетический обмен не может идти без пластического, так как пластический обмен поставляет для энергетического
82. В чем состоит сходство молекул ДНК и РНК
83. На какой стадии эмбрионального развития объем многоклеточного зародыша не превышает объема зиготы
84. Объясните, почему при половом размножении появляется более разнообразное потомство, чем при вегетативном.
85 Чем гетерозиготы отличаются от гомозигот
86. Установите, в какой последовательности происходит процесс редупликации ДНК.
87. Установите последовательность соподчинения систематических категорий у животных, начиная с наименьшей.
88. Установите последовательность действия движущих сил эволюции в популяции растений, начиная с мутационного процесса
89. Организмы, которым для нормальной жизнедеятельности необходимо наличие кислорода в среде обитания, называют
90. Какие виды топлива – природный газ, каменный уголь, атомная энергия способствуют созданию парникового эффекта
91. Объясните, почему при половом размножении появляется более разнообразное потомство, чем при вегетативном.
92. Чем характеризуется биологическое разнообразие.
93 Объясните, почему людей разных рас относят к одному виду. Ответ поясните.
94. Почему клетку считают функциональной единицей живого
95. Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагментмолекулы ДНК, на котором синтезируется участок центральной петли тРНК,имеет следующую последовательность нуклеотидов: АТАГЦТГААЦГГАЦТ.Установите нуклеотидную последовательность участка тРНК, которыйсинтезируется на данном фрагменте, и аминокислоту, которую будет переноситьэта тРНК в процессе биосинтеза белка, если третий триплет соответствуетантикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.
96. Метод изучения наследственности человека, в основе которого лежит изучение числа хромосом, особенностей их строения, называют
97 Молекулы АТФ выполняют в клетке функцию
98. Обмен веществ между клеткой и окружающей средой регулируется
99. Исходным материалом для естественного отбора служит
100. В связи с выходом на сушу у первых растений сформировались
101. При партеногенезе организм развивается из
102. Сколько видов гамет образуется у дигетерозиготных растений гороха при дигибридном скрещивании (гены не образуют группу сцепления)
103. При скрещивании двух морских свинок с черной шерстью(доминантный признак) получено потомство, среди которого особи с белойшерстью составили 25%. Каковы генотипы родителей5
104. Мутационная изменчивость, в отличие от модификационной
105. Грибы опята, питающиеся мертвыми органическими остатками пней,поваленных деревьев, относят к группе
106. Признак приспособленности птиц к полету
107. Череп человека отличается от черепа других млекопитающих
108. При умственной работе в клетках мозга человека усиливается
109. Совокупность внешних признаков особей относят к критерию вида
110. Пример внутривидовой борьбы за существование
111. Приспособленность организмов к среде обитания – результат
112. У человека в связи с прямохождением
113. К абиотическим факторам среды относят
114. Причинами смены одного биогеоценоза другим являются
115. Необходимое условие устойчивого развития биосферы
116. Матрицей для трансляции служит молекула
117. Число хромосом при половом размножении в каждом поколении возрастало бы вдвое, если бы в ходе эволюции не сформировался процесс
118. Количество групп сцепления генов у организмов зависит от числа
119. Чистая линия растений – это потомство120. Энергия, необходимая для мышечного сокращения, освобождается при

Какие процессы протекают во время мейоза?

1)
транскрипция
2)
редукционное деление
3)
денатурация
4)
кроссинговер
5)
конъюгация
6)
трансляция

В соответствии с клеточной теорией единицей роста и размножения организмов считают
1)
клетку
2)
особь
3)
ген
4)
гамету
Синтез белка происходит на
1)
аппарате Гольджи
2)
рибосомах
3)
гладкой эндоплазматической сети
4)
лизосомах
Согласно клеточной теории, клетки всех организмов
1)
сходны по химическому составу
2)
одинаковы по выполняемым функциям
3)
имеют ядро и ядрышко
4)
имеют одинаковые органоиды
Наличие билипидного слоя в плазматической мембране обеспечивает её
1)
связь с органоидами
2)
способность к активному транспорту
3)
устойчивость и прочность
4)
избирательную проницаемость
Из приведенных формулировок укажите положение клеточной теории.
1)
Оплодотворение - это процесс слияния мужской и женской гамет.
2)
Онтогенез повторяет историю развития своего вида.
3)
Дочерние клетки образуются в результате деления материнской.
4)
Половые клетки образуются в процессе мейоза.

Углекислый газ используется в качестве источника углерода в таких реакциях обмена веществ, как
1)
синтез липидов
2)
синтез нуклеиновых кислот
3)
хемосинтез
4)
синтез белка
Установите, в какой последовательности в первом делении мейоза протекают процессы.
А)
коньюгация гомологичных хромосом
Б)
разделение пар хромосом и перемещение их к полюсам
В)
образование дочерних клеток
Г)
расположение гомологичных хромосом в экваториальной плоскости
Значение митоза состоит в увеличении числа
1)
хромосом в половых клетках
2)
клеток с набором хромосом, равным материнской клетке
3)
молекул ДНК по сравнению с материнской клеткой
4)
хромосом в соматических клетках

Процессы жизнедеятельности у всех организмов протекают в клетке, поэтому её рассматривают как единицу
1)
размножения
2)
строения
3)
функциональную
4)
генетическую

МОЛЕКУЛЯРНЫЕ ОСНОВЫ НАСЛЕДСТВЕННОСТИ. РЕАЛИЗАЦИЯ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ.

Что такое наследственная информация?

Под наследственной информацией мы понимаем информацию о строении белков и характере синтеза белков в организме человека. Синоним – генетическая информация.

В хранении и реализации наследственной информации ведущую роль играют нуклеиновые кислоты. Нуклеиновые кислоты – это полимеры, мономерами которых являются нуклеотиды. Впервые нуклеиновые кислоты были открыты Ф. Мишером в 1869 г в ядрах лейкоцитов из гноя. Название происходит от латинского nucleus –ядро. Различают два вида нуклеиновых кислот: ДНК и РНК

Функции нуклеиновых кислот

ДНК хранит генетическую информацию. В ДНК находятся гены. РНК принимают участие в биосинтезе белка (т.е. в реализации наследственной информации)

Открытие роли ДНК в хранении наследственной информации. В 1944 г. Oswald Avery, Macklin McCarty, and Colin MacLeod представили доказательства того, что гены находятся в ДНК. Они работали с пневмококками, у которых есть два штамма: патогенный (S-штамм) и непатогенный (R- штамм). Заражение S-штаммом мышей приводит к их гибели

Если вводят R- штамм, то мыши выживают. Из убитых бактерий S-штамма выделили ДНК, белки и полисахариды и добавляли к R- штамму. Добавление ДНК вызывает трансформацию непатогенного штамма в патогенный.

История открытия строения ДНК.

Строение ДНК открыли в 1953 г Дж.Уотсон и Ф.Крик. В своей работе они использовали данные, которые получили биохимик Е.Чаргафф и биофизики Р.Франклин, М.Уилкинс.

Работа Е.Чаргаффа: В 1950 г. биохимик Ервин Чаргафф установил, что в молекуле ДНК:

1) А=Т и Г=Ц

2) Сумма пуриновых оснований (А и Г) равна сумме пиримидиновых оснований (Т и Ц): А+Г=Т+Ц

Или А+Г/Т+Ц=1

Работа Р.Франклин и М.Улкинс: В начале 50-х г.г. биофизики Р.Франклин и М.Уилкинс получили рентгенограммы ДНК, которые показали, что ДНК имеет форму двойной спирали. В 1962 г. Ф.Крик, Дж.Уотсон и Морис Уилкинс получили Нобелевскую премию по физиологии и медицине за расшифровку строения ДНК

Строение ДНК

ДНК – это полимер, который состоит из мономеров – нуклеотидов. Строение нуклеотида ДНК: нуклеотид ДНК состоит из остатков трех соединений:

1) Моносахарида дезоксирибозы

2) Фосфата - остатка фосфорной кислоты

3) Одного из четырех азотистых оснований – аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц).

Азотистые основания: А и Г – производные пурина (два кольца), Т и Ц- производные пиримидина (одно кольцо).

А комплементарен Т

Г комплементарен Ц

Между А и Т образуется 2 водородные связи, между Г и Ц - 3

В нуклеотиде атомы карбона в дезоксирибозе пронумерованы от 1’ до 5’.
К 1’-карбону присоединяется азотистое основание, а к 5’-карбону – фосфат. Нуклеотиды соединяются между собой фосфодиэфирными связями. В результате образуется полинуклеотидная цепьСкелет цепи состоит из чередующихся молекул фосфата и сахара дезоксирибозы.

Азотистые основания расположены сбоку молекулы. Один из концов цепи обозначают 5’, а другой - 3’ (по обозначению соответствующих атомов карбона). На 5’ – конце находится свободный фосфат, это начало молекулы. На 3’- конеце находится ОН-группа. Это хвост молекулы. Новые нуклеотиды могут присоединяться к 3’- концу.

Строение ДНК:

Согласно модели Крика –Уотсона, ДНК состоит из двух полинуклеотидных цепей, которые свернуты в спираль. Спираль правая (В-форма)

Цепи в ДНК расположены антипараллельно. 5’-конец одной полинуклеотидной цепи соединяется с 3’-концом другой.

В молекуле ДНК видны маленькая и большая борозды.

К ним присоединяются разные регуляторные белки.

В двух цепях азотистые основания расположены по принципу комплементарности и соединены водородными связями

А и Т – двумя водородными связями

Г и Ц - тремя

Размеры ДНК: толщина молекулы ДНК составляет 2 нм, расстояние между двумя витками спирали – 3,4 нм, в одном полном витке - 10 пар нуклеотидов. Средняя длина одной пары нуклеотидов 0,34 нм. Длина молекулы варьирует. В бактерии кишечная палочка кольцевидная ДНК имеет длину 1,2 мм. У человека суммарная длина 46 ДНК, выделенных из 46 хромосом составляет около 190 см. Следовательно, средняя длина 1 молекулы ДНК человека более 4 см.

Линейное изображение ДНК. Если цепи ДНК изображают в виде линии, то принято вверху изображать цепь в направлении от 5‘ к 3‘.

5‘ АТТГТЦЦГАГТА 3‘

3‘ ТААЦАГГЦТЦАТ 5"

Локализация ДНК в клетках эукариот:

1) Ядро – входит в состав хромосом;

2) Митохондрии;

3) У растений – пластиды.

Функция ДНК: хранит наследственную (генетическую) информацию. В ДНК находятся гены. У человека в клетке менее 30 000 генов.

Свойства ДНК

Способность к самоудвоению (редупликации) Редупликация – синтез ДНК.

Способность к репарации – восстановлению повреждений ДНК.

Способность к денатурации и ренатурации. Денатурация – под действием высокой температуры и щелочей разрываются водородные связи между цепями ДНК и ДНК становится однонитевой. Ренатурация – обратный процесс. Это свойство используется в ДНК-диагностике.

Редупликация – это синтез ДНК.

Процесс идет перед делением клетки в синтетическом периоде интерфазы.

Суть процесса: Фермент геликаза разрывает водородные связи между двумя цепями ДНК и раскручивает ДНК. На каждой материнской цепи по принципу комплементарности синтезируется дочерняя цепь. Процесс катализирует фермент ДНК-полимераза.

В результате редупликации образуется две дочерние ДНК, которые имеют такое же строение как и материнская молекула ДНК.

Рассмотрим процесс редупликации более подробно

1) Редупликация – полуконсервативный процесс, т.к. дочерняя молекула получает одну нить от материнской ДНК, а вторую синтезирует вновь

2) ДНК синтезируется из нуклеотидов с тремя фосфатами – АТФ, ТТФ,ГТФ,ЦТФ. При образовании фосфодиэфирной связи два фосфата выщепляются.

3) Синтез ДНК начинается в определенных точках – точках инициации репликации. В этих участках много А-Т пар. Специальные белки присоединяются к точке инициации.

Фермент геликаза начинает раскручивать материнскую ДНК. Нити ДНК расходятся.

Редупликацию катализирует фермент ДНК-полимераза.
От точки инициации фермент ДНК-полимераза движется в двух противоположных направлениях. Между расходящимися цепями образуется угол- репликационная вилка.

3) Цепи материнской ДНК антипараллельны. Дочерние цепи синтезируются антипараллельно материнским, поэтому синтез дочерних цепей в области репликационной вилки идет в двух противоположных направлениях. Синтез одной цепи идет в направлении движения фермента. Эта цепь синтезируется быстро и непрерывно (лидирующая). Вторая синтезируется в противоположном направлении маленькими фрагментами – фрагментами Оказаки (отстающая цепь).

4) Фермент ДНК-полимераза не может сам начать синтез дочерней цепи ДНК.

Синтез лидирующей цепи и любого фрагмента Оказаки начинается с синтеза праймера. Праймер - кусочек РНК длиной 10-15 нуклеотидов. Праймер синтезирует фермент праймаза из нуклеотидов РНК. К праймеру ДНК-полимераза присоединяет нуклеотиды ДНК.

В последующем праймеры вырезаются, брешь застраивается нуклеотидами ДНК.

Фрагменты сшиваются ферментами - лигазами

5) Ферменты, участвующие в редупликации: геликаза, топоизомераза, дестабилизирующие белки, ДНК-полимераза, лигаза.

6) Молекула ДНК длинная. В ней образуется большое число точек начала репликации.
ДНК синтезируется фрагментами – репликонами. Репликон – участок между двумя точками инициации репликации. В соматической клетке человека в 46 хромосомах более 50000 репликонов. Синтез ДНК 1 соматической клетки человека длится более 10 часов.

Репликация ДНК

Реплика́ция ДНК - процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков, называемый англ. replisome ) .

История изучения

Каждая молекула ДНК состоит из одной цепи исходной родительской молекулы и одной вновь синтезированной цепи. Такой механизм репликации называется полуконсервативным. В настоящее время этот механизм считается доказанным благодаря опытам Мэтью Мезельсона и Франклина Сталя ( г.) . Ранее существовали и две другие модели: «консервативная» - в результате репликации образуется одна молекула ДНК, состоящая только из родительских цепей, и одна, состоящая только из дочерних цепей; «дисперсионная» - все получившиеся в результате репликации молекулы ДНК состоят из цепей, одни участки которых вновь синтезированы, а другие взяты из родительской молекулы ДНК.

Общие представления

Репликация ДНК - ключевое событие в ходе деления клетки . Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа:

  1. инициация репликации
  2. элонгация
  3. терминация репликации.

Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтом инициации репликации . В геноме таких сайтов может быть как всего один, так и много. С понятием сайта инициации репликации тесно связано понятие репликон . Репликон - это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта. Геномы бактерий , как правило, представляют собой один репликон, это значит, что репликация всего генома является следствием всего одного акта инициации репликации. Геномы эукариот (а также их отдельные хромосомы) состоят из большого числа самостоятельных репликонов, это значительно сокращает суммарное время репликации отдельной хромосомы. Молекулярные механизмы, которые контролируют количество актов инициации репликации в каждом сайте за один цикл деления клетки, называются контролем копийности. В бактериальных клетках помимо хромосомной ДНК часто содержатся плазмиды , которые представляют собой отдельные репликоны. У плазмид существуют свои механизмы контроля копийности: они могут обеспечивать синтез как всего одной копии плазмиды за клеточный цикл , так и тысяч копий .

Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационная вилка - место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация. Через некоторое время после начала репликации в электронный микроскоп можно наблюдать репликационный глазок - участок хромосомы, где ДНК уже реплицирована, окруженный более протяженными участками нереплицированной ДНК .

В репликационной вилке ДНК копирует крупный белковый комплекс (реплисома), ключевым ферментом которого является ДНК-полимераза . Репликационная вилка движется со скоростью порядка 100 000 пар нуклеотидов в минуту у прокариот и 500-5000 - у эукариот .

Молекулярный механизм репликации

Ферменты (хеликаза , топоизомераза) и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимеразы , способной распознать и исправить ошибку. Репликация у эукариот осуществляется несколькими разными ДНК-полимеразами. Далее происходит закручивание синтезированных молекул по принципу суперспирализации и дальнейшей компактизации ДНК. Синтез энергозатратный.

Цепи молекулы ДНК расходятся, образуют репликационную вилку , и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются две новые двуспиральные молекулы ДНК, идентичные родительской молекуле.

Характеристики процесса репликации

Примечания

Литература

  • Сохранение ДНК в ряду поколений: Репликация ДНК (Фаворова О.О., СОЖ, 1996) PDF (151 KB)
  • Репликация ДНК (анимация) (англ.)

Wikimedia Foundation . 2010 .

Смотреть что такое "Репликация ДНК" в других словарях:

    репликация днк - – биосинтез новых ДНК на матрице материнской ДНК … Краткий словарь биохимических терминов

    репликация ДНК - DNR biosintezė statusas T sritis chemija apibrėžtis Fermentų katalizuojama polinukleotidinė DNR sintezė ant DNR matricos. atitikmenys: angl. DNA replication rus. репликация ДНК ryšiai: sinonimas – DNR replikacija … Chemijos terminų aiškinamasis žodynas

    - (от позднелат. replicatio повторение), редупликация, ауторепликация, процесс самовоспроизведения макромолекул нуклеиновых к т, обеспечивающий точное копирование генетич. информации и передачу её от поколения к поколению. В основе механизма Р.… … Биологический энциклопедический словарь

    - (от позднелат. replicatio повторение) (ауторепродукция аутосинтез, редупликация), удвоение молекул ДНК (у некоторых вирусов РНК) при участии специальных ферментов. Репликацией называется также удвоение хромосом, в основе которого лежит репликация … Большой Энциклопедический словарь

    - (дезоксирибонуклеиновая кислота), НУКЛЕИНОВАЯ КИСЛОТА, которая является основным компонентом ХРОМОСОМ ЭУКАРИОТОВЫХ клеток и некоторых ВИРУСОВ. ДНК часто называют «строительным материалом» жизни, поскольку в ней хранится ГЕНЕТИЧЕСКИЙ КОД,… … Научно-технический энциклопедический словарь

    Репликация неуправляемая - * рэплікацыя некіруемая * runaway replication множественная репликация ДНК плазмид, которая не связана с делением клетки и не контролируется этим делением … Генетика. Энциклопедический словарь

    Двойная спираль ДНК Дезоксирибонуклеиновая кислота (ДНК) один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная… … Википедия

    Схематическое изображение процесса репликации, цифрами отмечены: (1) запаздывающая нить, (2) лидирующая нить, (3) ДНК полимераза (Polα), (4) ДНК лигаза, (5) РНК праймер, (6) ДНК праймаза, (7) фрагмент Оказаки, (8) ДНК полимераза (Polδ), (9)… … Википедия

    - (от позднелат. replicatio повторение) (ауторепродукция, аутосинтез, редупликация), удвоение молекул ДНК (у некоторых вирусов РНК) при участии специальных ферментов. Репликацией называют также удвоение хромосом, в основе которого лежит репликация … Энциклопедический словарь

Репликация ДНК - это процесс ее удвоения перед делением клетки. Иногда говорят «редупликация ДНК». Удвоение происходит в S-фазе интерфазы клеточного цикла .

Очевидно, самокопирование генетического материала в живой природе есть необходимость. Только так дочерние образующихся при делении клетки могут содержать столько же ДНК, сколько его изначально было в исходной. Благодаря репликации все генетически запрограммированные особенности строения и метаболизма передаются в ряду поколений.

В процессе деления клетки каждая молекула ДНК из пары идентичных отходит в свою дочернюю клетку. Таким образом обеспечивается точная передача наследственной информации.

При синтезе ДНК потребляется энергия, т. е. это энергозатратный процесс.

Механизм репликации ДНК

Молекула ДНК сама по себе (без удвоения) представляет собой двойную спираль. В процессе редупликации водородные связи между двумя ее комплементарными цепями разрываются. И на каждой отдельной цепи, которая теперь служит шаблоном-матрицей, строится новая комплиментарная ей цепь. Таким образом образуются две молекулы ДНК. У каждой одна цепь достается ей от материнской ДНК, вторая - вновь синтезированная. Поэтому механизм репликации ДНК является полуконсервативным (одна цепь старая, одна новая). Такой механизм репликации был доказан в 1958 году.

В молекуле ДНК цепи антипараллельны. Это значит, что одна нить идет в направлении от 5" конца к 3", а комплементарная ей - наоборот. Цифры 5 и 3 обозначают номера атомов углерода в дезоксирибозе, входящей в состав каждого нуклеотида. Через эти атомы нуклеотиды связаны между собой фосфодиэфирными связями. И там, где у одной цепи 3" связи, у другой - 5", так как она перевернута, т. е. идет в другом направлении. Для наглядности можно представить, что вы положили руку на руку, как первоклашка, сидящий за партой.

Основной фермент, который выполняет наращивание новой нити ДНК, способен делать это только в одном направлении. А именно: присоединять новый нуклеотид только к 3" концу. Таким образом, синтез может идти только в направлении от 5" к 3".

Цепи антипараллельны, значит синтез должен идти на них в разных направлениях. Если бы цепи ДНК сначала полностью расходились, а потом на них уже строилась новая комплементарная, то это не было бы проблемой. В действительности же цепи расходятся в определенных точках начала репликации , и в этих местах на матрицах сразу начинается синтез.

Формируются так называемые репликационные вилки . При этом на одной материнской цепи синтез идет в сторону расхождения вилки, и этот синтез происходить непрерывно, без разрывов. На второй матрице синтез идет в обратную сторону от направления расхождения цепей исходной ДНК. Поэтому такой обратный синтез может идти только кусками, которые называются фрагментами Оказаки . Позже такие фрагменты «сшиваются» между собой.

Дочерняя цепь, которая реплицируется непрерывно, называется лидирующей, или ведущей . Та, которая синтезируется через фрагменты Оказаки, - запаздывающей, или отстающей , так как фрагментарная репликация выполняется медленнее.

На схеме нити родительской ДНК постепенно расходятся в направлении, в котором идет синтез ведущей дочерней цепи. Синтез отстающей цепи идет в обратную расхождению сторону, поэтому вынужден выполняться кусками.

Другой особенностью основного фермента синтеза ДНК (полимеразы) является то, что он не может сам начать синтез, только продолжить. Ему необходима затравка, или праймер . Поэтому на родительской нити сначала синтезируется небольшой комплементарный участок РНК, потом уже происходит наращивание цепи с помощью полимеразы. Позже праймеры удаляются, дыры застраиваются.

На схеме затравки показаны только на отстающей цепи. На самом деле они есть и на лидирующей. Однако здесь нужен только один праймер на вилку.

Поскольку цепи материнской ДНК не всегда расходятся с концов, а в точках инициализации, то на самом деле формируются не столько вилки, сколько глазки, или пузыри.

В каждом пузыре может быть две вилки, т. е. цепи будут расходиться в двух направлениях. Однако могут только в одном. Если все же расхождение двунаправлено, то из точки инициализации на одной нити ДНК синтез будет идти в двух направлениях - вперед и назад. При этом в одну сторону будет выполняться непрерывный синтез, а в другую - фрагментами Оказаки.

ДНК прокариот не линейна, а имеет кольцевую структуру и лишь одну точку начала репликации.

На схеме красным и синим цветом показаны две нити родительской молекулы ДНК. Новые синтезирующиеся нити показаны пунктиром.

У прокариот самокопирование ДНК выполняется быстрее, чем у эукариот. Если скорость редупликации у эукариот составляет сотни нуклеотидов в секунду, то у прокариот достигает тысячи и более.

Ферменты репликации

Репликацию ДНК обеспечивает целый комплекс ферментов, который называется реплисомой . Всего ферментов и белков репликации более 15. Ниже перечислены наиболее значимые.

Основным ферментом репликации является уже упомянутая ДНК-полимераза (на самом деле существует несколько разных), которая непосредственно осуществляет наращивание цепи. Это не единственная функция фермента. Полимераза способна «проверять», какой нуклеотид пытается присоединиться к концу. Если неподходящий, то она его удаляет. Другими словами, частичная репарация ДНК, т. е. ее исправление ошибок репликации, происходит уже на этапе синтеза.

Нуклеотиды, находящиеся в нуклеоплазме (или цитоплазме у бактерий), существуют в форме трифосфатов, т. е. это не нуклеотиды, а дезоксинуклеозидтрифосфаты (дАТФ, дТТФ, дГТФ, дЦТФ). Они похожи на АТФ , у которой три фосфатных остатка, два из которых связаны макроэргической связью. При разрыве таких связей выделяется много энергии. Также и у дезоксинуклеозидтрифосфатов две связи макроэргические. Полимераза отделяет два последних фосфата и использует выделяющуюся энергию на реакцию полимеризации ДНК.

Фермент хеликаза разделяет нити матричной ДНК, разрывая водородные связи между ними.

Поскольку молекула ДНК представляет собой двойную спираль, то разрыв связей провоцирует еще большее ее скручивание. Представьте канат из двух закрученных относительно друг друга веревок, и вы с одной стороны за концы тянете одну вправо, другую - влево. Сплетенная часть станет еще больше скручиваться, будет более тугой.

Для устранения подобного напряжения необходимо, чтобы еще неразошедшаяся двойная спираль быстро крутилась вокруг своей оси, «сбрасывая» возникающую сверхспирализацию. Однако это слишком энергозатратно. Поэтому в клетках реализуется другой механизм. Фермент топоизомераза разрывает одну из нитей, пропускает через разрыв второю и снова сшивает первую. Чем и устраняются возникающие супервитки.

Разошедшиеся в результате действия хеликазы нити матричной ДНК пытаются опять соединиться своими водородными связями. Чтобы этого не произошло, в действие вступают ДНК-связывающие белки . Это не ферменты в том понимании, что реакций они не катализируют. Такие белки прикрепляются к нити ДНК на всем ее протяжении и не дают комплементарным цепям матричной ДНК сомкнуться.

Праймеры синтезируются РНК-праймазой . А удаляются экзонуклеазой . После удаления праймера «дыру» застраивает другой тип полимеразы. Однако при этом отдельные участки ДНК не сшиваются.

Отдельные части синтезируемой цепи сшиваются таким ферментом репликации как ДНК-лигаза .