Дробно рациональные уравнения индивидуальное домашнее задание. Решение рациональных уравнений. "Решение дробных рациональных уравнений"

Прежде всего, чтобы научиться работать с рациональными дробями без ошибок, необходимо выучить формулы сокращённого умножения. И не просто выучить — их необходимо распознавать даже тогда, когда в роли слагаемых выступают синусы, логарифмы и корни.

Однако основным инструментом остаётся разложение числителя и знаменателя рациональной дроби на множители. Этого можно добиться тремя различными способами:

  1. Собственно, по формула сокращённого умножения: они позволяют свернуть многочлен в один или несколько множителей;
  2. С помощью разложения квадратного трёхчлена на множители через дискриминант. Этот же способ позволяет убедиться, что какой-либо трёхчлен на множители вообще не раскладывается;
  3. Метод группировки — самый сложный инструмент, но это единственный способ, который работает, если не сработали два предыдущих.

Как вы уже, наверное, догадались из названия этого видео, мы вновь поговорим о рациональных дробях. Буквально несколько минут назад у меня закончилось занятие с одним десятиклассником, и там мы разбирали именно эти выражения. Поэтому данный урок будет предназначен именно для старшеклассников.

Наверняка у многих сейчас возникнет вопрос: «Зачем ученикам 10-11 классов изучать такие простые вещи как рациональные дроби, ведь это проходится в 8 классе?». Но в том то и беда, что большинство людей эту тему именно «проходят». Они в 10-11 классе уже не помнят, как делается умножение, деление, вычитание и сложение рациональных дробей из 8-го класса, а ведь именно на этих простых знаниях строятся дальнейшие, более сложные конструкции, как решение логарифмических, тригонометрических уравнений и многих других сложных выражений, поэтому без рациональных дробей делать в старших классах практически нечего.

Формулы для решения задач

Давайте перейдем к делу. Прежде всего, нам потребуется два факта — два комплекта формул. Прежде всего, необходимо знать формулы сокращенного умножения:

  • ${{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)$ — разность квадратов;
  • ${{a}^{2}}\pm 2ab+{{b}^{2}}={{\left(a\pm b \right)}^{2}}$ — квадрат суммы или разности;
  • ${{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right)$ — сумма кубов;
  • ${{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right)$ — разность кубов.

В чистом виде они ни в каких примерах и в реальных серьезных выражениях не встречаются. Поэтому наша задача состоит в том, чтобы научиться видеть под буквами $a$ и $b$ гораздо более сложные конструкции, например, логарифмы, корни, синусы и т.д. Научиться видеть это можно лишь при помощи постоянной практики. Именно поэтому решать рациональные дроби совершенно необходимо.

Вторая, совершенно очевидная формула — это разложение квадратного трехчлена на множители:

${{x}_{1}}$; ${{x}_{2}}$ — корни.

С теоретической частью мы разобрались. Но как решать реальные рациональные дроби, которые рассматриваются в 8 классе? Сейчас мы и потренируемся.

Задача № 1

\[\frac{27{{a}^{3}}-64{{b}^{3}}}{{{b}^{3}}-4}:\frac{9{{a}^{2}}+12ab+16{{b}^{2}}}{{{b}^{2}}+4b+4}\]

Давайте попробуем применить вышеописанные формулы к решению рациональных дробей. Прежде всего, хочу объяснить, зачем вообще нужно разложение на множители. Дело в том, что при первом взгляде на первую часть задания хочется сократить куб с квадратом, но делать этого категорически нельзя, потому что они являются слагаемыми в числителе и в знаменателе, но ни в коем случае не множителями.

Вообще, что такое сокращение? Сокращение — это использование основного правила работы с такими выражениями. Основное свойство дроби заключается в том, что мы можем числитель и знаменатель можем умножить на одно и то же число, отличное от «нуля». В данном случае, когда мы сокращаем, то, наоборот, делим на одно и то же число, отличное от «нуля». Однако мы должны все слагаемые, стоящие в знаменателе, разделить на одно и то же число. Делать так нельзя. И сокращать числитель со знаменателем мы вправе лишь тогда, когда оба они разложены на множители. Давайте это и сделаем.

Теперь необходимо посмотреть, сколько слагаемых находится в том или ином элементе, в соответствии с этим узнать, какую формулу необходимо использовать.

Преобразуем каждое выражение в точный куб:

Перепишем числитель:

\[{{\left(3a \right)}^{3}}-{{\left(4b \right)}^{3}}=\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)\]

Давайте посмотрим на знаменатель. Разложим его по формуле разности квадратов:

\[{{b}^{2}}-4={{b}^{2}}-{{2}^{2}}=\left(b-2 \right)\left(b+2 \right)\]

Теперь посмотрим на вторую часть выражения:

Числитель:

Осталось разобраться со знаменателем:

\[{{b}^{2}}+2\cdot 2b+{{2}^{2}}={{\left(b+2 \right)}^{2}}\]

Давайте перепишем всю конструкцию с учетом вышеперечисленных фактов:

\[\frac{\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)}{\left(b-2 \right)\left(b+2 \right)}\cdot \frac{{{\left(b+2 \right)}^{2}}}{{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}}=\]

\[=\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}\]

Нюансы умножения рациональных дробей

Ключевой вывод из этих построений следующий:

  • Далеко не каждый многочлен раскладывается на множители.
  • Даже если он и раскладывается, необходимо внимательно смотреть, по какой именно формуле сокращенного умножения.

Для этого, во-первых, нужно оценить, сколько всего слагаемых (если их два, то все, что мы можем сделать, то это разложить их либо по сумме разности квадратов, либо по сумме или разности кубов; а если их три, то это, однозначно, либо квадрат суммы, либо квадрат разности). Очень часто бывает так, что или числитель, или знаменатель вообще не требует разложения на множители, он может быть линейным, либо дискриминант его будет отрицательным.

Задача № 2

\[\frac{3-6x}{2{{x}^{2}}+4x+8}\cdot \frac{2x+1}{{{x}^{2}}+4-4x}\cdot \frac{8-{{x}^{3}}}{4{{x}^{2}}-1}\]

В целом, схема решения этой задачи ничем не отличается от предыдущей — просто действий будет больше, и они станут разнообразнее.

Начнем с первой дроби: посмотрим на ее числитель и сделаем возможные преобразования:

Теперь посмотрим на знаменатель:

Со второй дробью: в числителе вообще ничего нельзя сделать, потому что это линейное выражение, и вынести из него какой-либо множитель нельзя. Посмотрим на знаменатель:

\[{{x}^{2}}-4x+4={{x}^{2}}-2\cdot 2x+{{2}^{2}}={{\left(x-2 \right)}^{2}}\]

Идем к третьей дроби. Числитель:

Разберемся со знаменателем последней дроби:

Перепишем выражение с учетом вышеописанных фактов:

\[\frac{3\left(1-2x \right)}{2\left({{x}^{2}}+2x+4 \right)}\cdot \frac{2x+1}{{{\left(x-2 \right)}^{2}}}\cdot \frac{\left(2-x \right)\left({{2}^{2}}+2x+{{x}^{2}} \right)}{\left(2x-1 \right)\left(2x+1 \right)}=\]

\[=\frac{-3}{2\left(2-x \right)}=-\frac{3}{2\left(2-x \right)}=\frac{3}{2\left(x-2 \right)}\]

Нюансы решения

Как видите, далеко не все и не всегда упирается в формулы сокращенного умножения — иногда просто достаточно вынести за скобки константу или переменную. Однако бывает и обратная ситуация, когда слагаемых настолько много или они так построены, что формулы сокращенного умножения к ним вообще невозможно. В этом случае к нам на помощь приходит универсальный инструмент, а именно, метод группировки. Именно это мы сейчас и применим в следующей задаче.

Задача № 3

\[\frac{{{a}^{2}}+ab}{5a-{{a}^{2}}+{{b}^{2}}-5b}\cdot \frac{{{a}^{2}}-{{b}^{2}}+25-10a}{{{a}^{2}}-{{b}^{2}}}\]

Разберем первую часть:

\[{{a}^{2}}+ab=a\left(a+b \right)\]

\[=5\left(a-b \right)-\left(a-b \right)\left(a+b \right)=\left(a-b \right)\left(5-1\left(a+b \right) \right)=\]

\[=\left(a-b \right)\left(5-a-b \right)\]

Давайте перепишем исходное выражение:

\[\frac{a\left(a+b \right)}{\left(a-b \right)\left(5-a-b \right)}\cdot \frac{{{a}^{2}}-{{b}^{2}}+25-10a}{{{a}^{2}}-{{b}^{2}}}\]

Теперь разберемся со второй скобкой:

\[{{a}^{2}}-{{b}^{2}}+25-10a={{a}^{2}}-10a+25-{{b}^{2}}=\left({{a}^{2}}-2\cdot 5a+{{5}^{2}} \right)-{{b}^{2}}=\]

\[={{\left(a-5 \right)}^{2}}-{{b}^{2}}=\left(a-5-b \right)\left(a-5+b \right)\]

Так как два элемента не получилось сгруппировать, то мы сгруппировали три. Осталось разобраться лишь со знаменателем последней дроби:

\[{{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)\]

Теперь перепишем всю нашу конструкцию:

\[\frac{a\left(a+b \right)}{\left(a-b \right)\left(5-a-b \right)}\cdot \frac{\left(a-5-b \right)\left(a-5+b \right)}{\left(a-b \right)\left(a+b \right)}=\frac{a\left(b-a+5 \right)}{{{\left(a-b \right)}^{2}}}\]

Задача решена, и больше ничего упростить здесь нельзя.

Нюансы решения

С группировкой мы разобрались и получили еще один очень мощный инструмент, который расширяет возможности по разложению на множители. Но проблема в том, что в реальной жизни нам никто не будет давать вот такие рафинированные примеры, где есть несколько дробей, у которых нужно лишь разложить на множитель числитель и знаменатель, а потом по возможности их сократить. Реальные выражения будут гораздо сложнее.

Скорее всего, помимо умножения и деления там будут присутствовать вычитания и сложения, всевозможные скобки — вообщем, придется учитывать порядок действий. Но самое страшное, что при вычитании и сложении дробей с разными знаменателями их придется приводить к одному общему. Для этого каждый из них нужно будет раскладывать на множители, а потом преобразовывать эти дроби: приводить подобные и многое другое. Как это сделать правильно, быстро, и при этом получить однозначно правильный ответ? Именно об этом мы и поговорим сейчас на примере следующей конструкции.

Задача № 4

\[\left({{x}^{2}}+\frac{27}{x} \right)\cdot \left(\frac{1}{x+3}+\frac{1}{{{x}^{2}}-3x+9} \right)\]

Давайте выпишем первую дробь и попытаемся разобраться с ней отдельно:

\[{{x}^{2}}+\frac{27}{x}=\frac{{{x}^{2}}}{1}+\frac{27}{x}=\frac{{{x}^{3}}}{x}+\frac{27}{x}=\frac{{{x}^{3}}+27}{x}=\frac{{{x}^{3}}+{{3}^{3}}}{x}=\]

\[=\frac{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}{x}\]

Переходим ко второй. Сразу посчитаем дискриминант знаменателя:

Он на множители не раскладывается, поэтому запишем следующее:

\[\frac{1}{x+3}+\frac{1}{{{x}^{2}}-3x+9}=\frac{{{x}^{2}}-3x+9+x+3}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}=\]

\[=\frac{{{x}^{2}}-2x+12}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}\]

Числитель выпишем отдельно:

\[{{x}^{2}}-2x+12=0\]

Следовательно, этот многочлен на множители не раскладывается.

Максимум, что мы могли сделать и разложить, мы уже сделали.

Итого переписываем нашу исходную конструкцию и получаем:

\[\frac{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}{x}\cdot \frac{{{x}^{2}}-2x+12}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}=\frac{{{x}^{2}}-2x+12}{x}\]

Все, задача решена.

Если честно, это была не такая уж и сложная задача: там все легко раскладывалось на множители, быстро приводились подобные слагаемые, и все красиво сокращалось. Поэтому сейчас давайте попробуем решить задачку посерьезней.

Задача № 5

\[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Сначала давайте разберемся с первой скобкой. С самого начала разложим на множители знаменатель второй дроби отдельно:

\[{{x}^{3}}-8={{x}^{3}}-{{2}^{3}}=\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)\]

\[\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{{{x}^{2}}}=\]

\[=\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}-\frac{1}{x-2}=\]

\[=\frac{x\left(x-2 \right)+{{x}^{2}}+8-\left({{x}^{2}}+2x+4 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\]

\[=\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\]

\[=\frac{{{x}^{2}}-4x+4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Теперь поработаем со второй дробью:

\[\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x}=\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}-\frac{2}{2-x}=\frac{{{x}^{2}}+2\left(x-2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\]

\[=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}\]

Возвращаемся к нашей исходной конструкции и записываем:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

Ключевые моменты

Еще раз ключевые факты сегодняшнего видеоурока:

  1. Необходимо знать «назубок» формулы сокращенного умножения — и не просто знать, а уметь видеть в тех выражениях, которые будут вам встречаться в реальных задачах. Помочь нам в этом может замечательное правило: если слагаемых два, то это либо разность квадратов, либо разность или сумма кубов; если три — это может быть только квадрат суммы или разности.
  2. Если какая-либо конструкция не раскладывается при помощи формул сокращенного умножения, то нам на помощь приходит либо стандартная формула разложения трехчленов на множители, либо метод группировки.
  3. Если что-то не получается, внимательно посмотрите на исходное выражение — а требуются ли вообще какие-то преобразования с ним. Возможно, достаточно будет просто вынести множитель за скобку, а это очень часто бывает просто константа.
  4. В сложных выражениях, где требуется выполнить несколько действий подряд, не забывайте приводить к общему знаменателю, и лишь после этого, когда все дроби приведены к нему, обязательно приведите подобное в новом числителе, а потом новый числитель еще раз разложите на множители — возможно, что-то сократится.

Вот и все, что я хотел вам рассказать сегодня о рациональных дробях. Если что-то непонятно — на сайте еще куча видеоуроков, а также куча задач для самостоятельного решения. Поэтому оставайтесь с нами!

Мы уже научились решать квадратные уравнения. Теперь распространим изученные методы на рациональные уравнения.

Что такое рациональное выражение? Мы уже сталкивались с этим понятием. Рациональными выражениями называются выражения, составленные из чисел, переменных, их степеней и знаков математических действий.

Соответственно, рациональными уравнениями называются уравнения вида: , где - рациональные выражения.

Раньше мы рассматривали только те рациональные уравнения, которые сводятся к линейным. Теперь рассмотрим и те рациональные уравнения, которые сводятся и к квадратным.

Пример 1

Решить уравнение: .

Решение:

Дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель не равен 0.

Получаем следующую систему:

Первое уравнение системы - это квадратное уравнение. Прежде чем его решать, поделим все его коэффициенты на 3. Получим:

Получаем два корня: ; .

Поскольку 2 никогда не равно 0, то необходимо, чтобы выполнялись два условия: . Поскольку ни один из полученных выше корней уравнения не совпадает с недопустимыми значениями переменной, которые получились при решении второго неравенства, они оба являются решениями данного уравнения.

Ответ: .

Итак, давайте сформулируем алгоритм решения рациональных уравнений:

1. Перенести все слагаемые в левую часть, чтобы в правой части получился 0.

2. Преобразовать и упростить левую часть, привести все дроби к общему знаменателю.

3. Полученную дробь приравнять к 0, по следующему алгоритму: .

4. Записать те корни, которые получились в первом уравнении и удовлетворяют второму неравенству, в ответ.

Давайте рассмотрим еще один пример.

Пример 2

Решить уравнение: .

Решение

В самом начале перенесем все слагаемые в левую сторону, чтобы справа остался 0. Получаем:

Теперь приведем левую часть уравнения к общему знаменателю:

Данное уравнение эквивалентно системе:

Первое уравнение системы - это квадратное уравнение.

Коэффициенты данного уравнения: . Вычисляем дискриминант:

Получаем два корня: ; .

Теперь решим второе неравенство: произведение множителей не равно 0 тогда и только тогда, когда ни один из множителей не равен 0.

Необходимо, чтобы выполнялись два условия: . Получаем, что из двух корней первого уравнения подходит только один - 3.

Ответ: .

На этом уроке мы вспомнили, что такое рациональное выражение, а также научились решать рациональные уравнения, которые сводятся к квадратным уравнениям.

На следующем уроке мы рассмотрим рациональные уравнения как модели реальных ситуаций, а также рассмотрим задачи на движение.

Список литературы

  1. Башмаков М.И. Алгебра, 8 класс. - М.: Просвещение, 2004.
  2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра, 8. 5-е изд. - М.: Просвещение, 2010.
  3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра, 8 класс. Учебник для общеобразовательных учреждений. - М.: Просвещение, 2006.
  1. Фестиваль педагогических идей "Открытый урок" ().
  2. School.xvatit.com ().
  3. Rudocs.exdat.com ().

Домашнее задание


Продолжаем разговор про решение уравнений . В этой статье мы подробно остановимся на рациональных уравнениях и принципах решения рациональных уравнений с одной переменной. Сначала разберемся, уравнения какого вида называются рациональными, дадим определение целых рациональных и дробных рациональных уравнений, приведем примеры. Дальше получим алгоритмы решения рациональных уравнений, и, конечно же, рассмотрим решения характерных примеров со всеми необходимыми пояснениями.

Навигация по странице.

Отталкиваясь от озвученных определений, приведем несколько примеров рациональных уравнений. Например, x=1 , 2·x−12·x 2 ·y·z 3 =0 , , - это все рациональные уравнения.

Из показанных примеров видно, что рациональные уравнения, как, впрочем, и уравнения других видов, могут быть как с одной переменной, так и с двумя, тремя и т.д. переменными. В следующих пунктах мы будем говорить о решении рациональных уравнений с одной переменной. Решение уравнений с двумя переменными и их большим числом заслуживают отдельного внимания.

Помимо деления рациональных уравнений по количеству неизвестных переменных, их еще разделяют на целые и дробные. Дадим соответствующие определения.

Определение.

Рациональное уравнение называют целым , если и левая, и правая его части являются целыми рациональными выражениями.

Определение.

Если хотя бы одна из частей рационального уравнения является дробным выражением, то такое уравнение называется дробно рациональным (или дробным рациональным).

Понятно, что целые уравнения не содержат деления на переменную, напротив, дробные рациональные уравнения обязательно содержат деление на переменную (или переменную в знаменателе). Так 3·x+2=0 и (x+y)·(3·x 2 −1)+x=−y+0,5 – это целые рациональные уравнения, обе их части являются целыми выражениями. А и x:(5·x 3 +y 2)=3:(x−1):5 – примеры дробных рациональных уравнений.

Завершая этот пункт, обратим внимание на то, что известные к этому моменту линейные уравнения и квадратные уравнения являются целыми рациональными уравнениями.

Решение целых уравнений

Одним из основных подходов к решению целых уравнений является их сведение к равносильным алгебраическим уравнениям . Это можно сделать всегда, выполнив следующие равносильные преобразования уравнения :

  • сначала выражение из правой части исходного целого уравнения переносят в левую часть с противоположным знаком, чтобы получить нуль в правой части;
  • после этого в левой части уравнения образовавшееся стандартного вида.

В результате получается алгебраическое уравнение, которое равносильно исходному целому уравнению. Так в самых простых случаях решение целых уравнений сводятся к решению линейных или квадратных уравнений, а в общем случае – к решению алгебраического уравнения степени n . Для наглядности разберем решение примера.

Пример.

Найдите корни целого уравнения 3·(x+1)·(x−3)=x·(2·x−1)−3 .

Решение.

Сведем решение этого целого уравнения к решению равносильного ему алгебраического уравнения. Для этого, во-первых, перенесем выражение из правой части в левую, в результате приходим к уравнению 3·(x+1)·(x−3)−x·(2·x−1)+3=0 . И, во-вторых, преобразуем выражение, образовавшееся в левой части, в многочлен стандартного вида, выполнив необходимые : 3·(x+1)·(x−3)−x·(2·x−1)+3= (3·x+3)·(x−3)−2·x 2 +x+3= 3·x 2 −9·x+3·x−9−2·x 2 +x+3=x 2 −5·x−6 . Таким образом, решение исходного целого уравнения сводится к решению квадратного уравнения x 2 −5·x−6=0 .

Вычисляем его дискриминант D=(−5) 2 −4·1·(−6)=25+24=49 , он положительный, значит, уравнение имеет два действительных корня, которые находим по формуле корней квадратного уравнения :

Для полной уверенности выполним проверку найденных корней уравнения . Сначала проверяем корень 6 , подставляем его вместо переменной x в исходное целое уравнение: 3·(6+1)·(6−3)=6·(2·6−1)−3 , что то же самое, 63=63 . Это верное числовое равенство, следовательно, x=6 действительно является корнем уравнения. Теперь проверяем корень −1 , имеем 3·(−1+1)·(−1−3)=(−1)·(2·(−1)−1)−3 , откуда, 0=0 . При x=−1 исходное уравнение также обратилось в верное числовое равенство, следовательно, x=−1 тоже является корнем уравнения.

Ответ:

6 , −1 .

Здесь еще нужно заметить, что с представлением целого уравнения в виде алгебраического уравнения связан термин «степень целого уравнения». Дадим соответствующее определение:

Определение.

Степенью целого уравнения называют степень равносильного ему алгебраического уравнения.

Согласно этому определению целое уравнение из предыдущего примера имеет вторую степень.

На этом можно бы было закончить с решением целых рациональных уравнений, если бы ни одно но…. Как известно, решение алгебраических уравнений степени выше второй сопряжено со значительными сложностями, а для уравнений степени выше четвертой вообще не существует общих формул корней. Поэтому для решения целых уравнений третьей, четвертой и более высоких степеней часто приходится прибегать к другим методам решения.

В таких случаях иногда выручает подход к решению целых рациональных уравнений, основанный на методе разложения на множители . При этом придерживаются следующего алгоритма:

  • сначала добиваются, чтобы в правой части уравнения был нуль, для этого переносят выражение из правой части целого уравнения в левую;
  • затем, полученное выражение в левой части представляют в виде произведения нескольких множителей, что позволяет перейти к совокупности нескольких более простых уравнений.

Приведенный алгоритм решения целого уравнения через разложение на множители требует детального разъяснения на примере.

Пример.

Решите целое уравнение (x 2 −1)·(x 2 −10·x+13)= 2·x·(x 2 −10·x+13) .

Решение.

Сначала как обычно переносим выражение из правой части в левую часть уравнения, не забыв изменить знак, получаем (x 2 −1)·(x 2 −10·x+13)− 2·x·(x 2 −10·x+13)=0 . Здесь достаточно очевидно, что не целесообразно преобразовывать левую часть полученного уравнения в многочлен стандартного вида, так как это даст алгебраическое уравнение четвертой степени вида x 4 −12·x 3 +32·x 2 −16·x−13=0 , решение которого сложно.

С другой стороны, очевидно, что в левой части полученного уравнения можно x 2 −10·x+13 , тем самым представив ее в виде произведения. Имеем (x 2 −10·x+13)·(x 2 −2·x−1)=0 . Полученное уравнение равносильно исходному целому уравнению, и его, в свою очередь, можно заменить совокупностью двух квадратных уравнений x 2 −10·x+13=0 и x 2 −2·x−1=0 . Нахождение их корней по известным формулам корней через дискриминант не составляет труда, корни равны . Они являются искомыми корнями исходного уравнения.

Ответ:

Для решения целых рациональных уравнений также бывает полезен метод введения новой переменной . В некоторых случаях он позволяет переходить к уравнениям, степень которых ниже, чем степень исходного целого уравнения.

Пример.

Найдите действительные корни рационального уравнения (x 2 +3·x+1) 2 +10=−2·(x 2 +3·x−4) .

Решение.

Сведение данного целого рационального уравнения к алгебраическому уравнению является, мягко говоря, не очень хорошей идеей, так как в этом случае мы придем к необходимости решения уравнения четвертой степени, не имеющего рациональных корней. Поэтому, придется поискать другой способ решения.

Здесь несложно заметить, что можно ввести новую переменную y , и заменить ею выражение x 2 +3·x . Такая замена приводит нас к целому уравнению (y+1) 2 +10=−2·(y−4) , которое после переноса выражения −2·(y−4) в левую часть и последующего преобразования образовавшегося там выражения, сводится к квадратному уравнению y 2 +4·y+3=0 . Корни этого уравнения y=−1 и y=−3 легко находятся, например, их можно подобрать, основываясь на теореме, обратной теореме Виета .

Теперь переходим ко второй части метода введения новой переменной, то есть, к проведению обратной замены. Выполнив обратную замену, получаем два уравнения x 2 +3·x=−1 и x 2 +3·x=−3 , которые можно переписать как x 2 +3·x+1=0 и x 2 +3·x+3=0 . По формуле корней квадратного уравнения находим корни первого уравнения . А второе квадратное уравнение не имеет действительных корней, так как его дискриминант отрицателен (D=3 2 −4·3=9−12=−3 ).

Ответ:

Вообще, когда мы имеем дело с целыми уравнениями высоких степеней, всегда надо быть готовым к поиску нестандартного метода или искусственного приема для их решения.

Решение дробно рациональных уравнений

Сначала будет полезно разобраться, как решать дробно рациональные уравнения вида , где p(x) и q(x) – целые рациональные выражения. А дальше мы покажем, как свести решение остальных дробно рациональных уравнений к решению уравнений указанного вида.

В основе одного из подходов к решению уравнения лежит следующее утверждение: числовая дробь u/v , где v – отличное от нуля число (иначе мы столкнемся с , которое не определено), равна нулю тогда и только тогда, когда ее числитель равен нулю, то есть, тогда и только тогда, когда u=0 . В силу этого утверждения, решение уравнения сводится к выполнению двух условий p(x)=0 и q(x)≠0 .

Этому заключению соответствует следующий алгоритм решения дробно рационального уравнения . Чтобы решить дробное рациональное уравнение вида , надо

  • решить целое рациональное уравнение p(x)=0 ;
  • и проверить, выполняется ли для каждого найденного корня условие q(x)≠0 , при этом
    • если выполняется, то этот корень является корнем исходного уравнения;
    • если не выполняется, то этот корень – посторонний, то есть, не является корнем исходного уравнения.

Разберем пример применения озвученного алгоритма при решении дробного рационального уравнения.

Пример.

Найдите корни уравнения .

Решение.

Это дробно рациональное уравнение, причем вида , где p(x)=3·x−2 , q(x)=5·x 2 −2=0 .

Согласно алгоритму решения дробно рациональных уравнений этого вида, нам сначала надо решить уравнение 3·x−2=0 . Это линейное уравнение, корнем которого является x=2/3 .

Осталось выполнить проверку для этого корня, то есть проверить, удовлетворяет ли он условию 5·x 2 −2≠0 . Подставляем в выражение 5·x 2 −2 вместо x число 2/3 , получаем . Условие выполнено, поэтому x=2/3 является корнем исходного уравнения.

Ответ:

2/3 .

К решению дробного рационального уравнения можно подходить с немного другой позиции. Это уравнение равносильно целому уравнению p(x)=0 на переменной x исходного уравнения. То есть, можно придерживаться такого алгоритма решения дробно рационального уравнения :

  • решить уравнение p(x)=0 ;
  • найти ОДЗ переменной x ;
  • взять корни, принадлежащие области допустимых значений, - они являются искомыми корнями исходного дробного рационального уравнения.

Для примера решим дробное рациональное уравнение по этому алгоритму.

Пример.

Решите уравнение .

Решение.

Во-первых, решаем квадратное уравнение x 2 −2·x−11=0 . Его корни можно вычислить, используя формулу корней для четного второго коэффициента , имеем D 1 =(−1) 2 −1·(−11)=12 , и .

Во-вторых, находим ОДЗ переменной x для исходного уравнения. Ее составляют все числа, для которых x 2 +3·x≠0 , что то же самое x·(x+3)≠0 , откуда x≠0 , x≠−3 .

Остается проверить, входят ли найденные на первом шаге корни в ОДЗ. Очевидно, да. Следовательно, исходное дробно рациональное уравнение имеет два корня .

Ответ:

Отметим, что такой подход выгоднее первого, если легко находится ОДЗ, и особенно выгоден, если еще при этом корни уравнения p(x)=0 иррациональные, например, , или рациональные, но с довольно большим числителем и/или знаменателем, к примеру, 127/1101 и −31/59 . Это связано с тем, что в таких случаях проверка условия q(x)≠0 потребует значительных вычислительных усилий, и проще исключить посторонние корни по ОДЗ.

В остальных случаях при решении уравнения , особенно когда корни уравнения p(x)=0 целые, выгоднее использовать первый из приведенных алгоритмов. То есть, целесообразно сразу находить корни целого уравнения p(x)=0 , после чего проверять, выполняется ли для них условие q(x)≠0 , а не находить ОДЗ, после чего решать уравнение p(x)=0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Рассмотрим решение двух примеров для иллюстрации оговоренных нюансов.

Пример.

Найдите корни уравнения .

Решение.

Сначала найдем корни целого уравнения (2·x−1)·(x−6)·(x 2 −5·x+14)·(x+1)=0 , составленного с использованием числителя дроби. Левая часть этого уравнения – произведение, а правая – нуль, поэтому, согласно методу решения уравнений через разложение на множители, это уравнение равносильно совокупности четырех уравнений 2·x−1=0 , x−6=0 , x 2 −5·x+14=0 , x+1=0 . Три из этих уравнений линейные и одно – квадратное, их мы умеем решать. Из первого уравнения находим x=1/2 , из второго – x=6 , из третьего – x=7 , x=−2 , из четвертого – x=−1 .

С найденными корнями достаточно легко выполнить их проверку на предмет того, не обращается ли при них в нуль знаменатель дроби, находящейся в левой части исходного уравнения, а определить ОДЗ, напротив, не так просто, так как для этого придется решать алгебраическое уравнение пятой степени. Поэтому, откажемся от нахождения ОДЗ в пользу проверки корней. Для этого по очереди подставляем их вместо переменной x в выражение x 5 −15·x 4 +57·x 3 −13·x 2 +26·x+112 , получающихся после подстановки, и сравниваем их с нулем: (1/2) 5 −15·(1/2) 4 + 57·(1/2) 3 −13·(1/2) 2 +26·(1/2)+112= 1/32−15/16+57/8−13/4+13+112= 122+1/32≠0 ;
6 5 −15·6 4 +57·6 3 −13·6 2 +26·6+112= 448≠0 ;
7 5 −15·7 4 +57·7 3 −13·7 2 +26·7+112=0 ;
(−2) 5 −15·(−2) 4 +57·(−2) 3 −13·(−2) 2 + 26·(−2)+112=−720≠0 ;
(−1) 5 −15·(−1) 4 +57·(−1) 3 −13·(−1) 2 + 26·(−1)+112=0 .

Таким образом, 1/2 , 6 и −2 являются искомыми корнями исходного дробно рационального уравнения, а 7 и −1 – посторонние корни.

Ответ:

1/2 , 6 , −2 .

Пример.

Найдите корни дробного рационального уравнения .

Решение.

Сначала найдем корни уравнения (5·x 2 −7·x−1)·(x−2)=0 . Это уравнение равносильно совокупности двух уравнений: квадратного 5·x 2 −7·x−1=0 и линейного x−2=0 . По формуле корней квадратного уравнения находим два корня , а из второго уравнения имеем x=2 .

Проверять, не обращается ли в нуль знаменатель при найденных значениях x , достаточно неприятно. А определить область допустимых значений переменной x в исходном уравнении достаточно просто. Поэтому, будем действовать через ОДЗ.

В нашем случае ОДЗ переменной x исходного дробно рационального уравнения составляют все числа, кроме тех, для которых выполняется условие x 2 +5·x−14=0 . Корнями этого квадратного уравнения являются x=−7 и x=2 , откуда делаем вывод про ОДЗ: ее составляют все такие x , что .

Остается проверить, принадлежат ли найденные корни и x=2 области допустимых значений. Корни - принадлежат, поэтому, они являются корнями исходного уравнения, а x=2 – не принадлежит, поэтому, это посторонний корень.

Ответ:

Еще полезным будет отдельно остановиться на случаях, когда в дробном рациональном уравнении вида в числителе находится число, то есть, когда p(x) представлено каким-либо числом. При этом

  • если это число отлично от нуля, то уравнение не имеет корней, так как дробь равна нулю тогда и только тогда, когда ее числитель равен нулю;
  • если это число нуль, то корнем уравнения является любое число из ОДЗ.

Пример.

Решение.

Так как в числителе дроби, находящейся в левой части уравнения, отличное от нуля число, то ни при каких x значение этой дроби не может равняться нулю. Следовательно, данное уравнение не имеет корней.

Ответ:

нет корней.

Пример.

Решите уравнение .

Решение.

В числителе дроби, находящейся в левой части данного дробного рационального уравнения, находится нуль, поэтому значение этой дроби равно нулю для любого x , при котором она имеет смысл. Другими словами, решением этого уравнения является любое значение x из ОДЗ этой переменной.

Осталось определить эту область допустимых значений. Она включает все такие значения x , при которых x 4 +5·x 3 ≠0 . Решениями уравнения x 4 +5·x 3 =0 являются 0 и −5 , так как, это уравнение равносильно уравнению x 3 ·(x+5)=0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 =0 и x+5=0 , откуда и видны эти корни. Следовательно, искомой областью допустимых значений являются любые x , кроме x=0 и x=−5 .

Таким образом, дробно рациональное уравнение имеет бесконечно много решений, которыми являются любые числа, кроме нуля и минус пяти.

Ответ:

Наконец, пришло время поговорить о решении дробных рациональных уравнений произвольного вида. Их можно записать как r(x)=s(x) , где r(x) и s(x) – рациональные выражения, причем хотя бы одно из них дробное. Забегая вперед, скажем, что их решение сводится к решению уравнений уже знакомого нам вида .

Известно, что перенос слагаемого из одной части уравнения в другую с противоположным знаком приводит к равносильному уравнению, поэтому уравнению r(x)=s(x) равносильно уравнение r(x)−s(x)=0 .

Также мы знаем, что можно любое , тождественно равную этому выражению. Таким образом, рациональное выражение в левой части уравнения r(x)−s(x)=0 мы всегда можем преобразовать в тождественно равную рациональную дробь вида .

Так мы от исходного дробного рационального уравнения r(x)=s(x) переходим к уравнению , а его решение, как мы выяснили выше, сводится к решению уравнения p(x)=0 .

Но здесь обязательно надо учитывать тот факт, что при замене r(x)−s(x)=0 на , и дальше на p(x)=0 , может произойти расширение области допустимых значений переменной x .

Следовательно, исходное уравнение r(x)=s(x) и уравнение p(x)=0 , к которому мы пришли, могут оказаться неравносильными, и, решив уравнение p(x)=0 , мы можем получить корни, которые будут посторонними корнями исходного уравнения r(x)=s(x) . Выявить и не включать в ответ посторонние корни можно, либо выполнив проверку, либо проверив их принадлежность ОДЗ исходного уравнения.

Обобщим эту информацию в алгоритм решения дробного рационального уравнения r(x)=s(x) . Чтобы решить дробное рациональное уравнение r(x)=s(x) , надо

  • Получить справа нуль с помощью переноса выражения из правой части с противоположным знаком.
  • Выполнить действия с дробями и многочленами в левой части уравнения, тем самым преобразовав ее в рациональную дробь вида .
  • Решить уравнение p(x)=0 .
  • Выявить и исключить посторонние корни, что делается посредством их подстановки в исходное уравнение или посредством проверки их принадлежности ОДЗ исходного уравнения.

Для большей наглядности покажем всю цепочку решения дробных рациональных уравнений:
.

Давайте рассмотрим решения нескольких примеров с подробным пояснением хода решения, чтобы прояснить приведенный блок информации.

Пример.

Решите дробное рациональное уравнение .

Решение.

Будем действовать в соответствии с только что полученным алгоритмом решения. И сначала перенесем слагаемые из правой части уравнения в левую, в результате переходим к уравнению .

На втором шаге нам нужно преобразовать дробное рациональное выражение в левой части полученного уравнения к виду дроби . Для этого выполняем приведение рациональных дробей к общему знаменателю и упрощаем полученное выражение: . Так мы приходим к уравнению .

На следующем этапе нам нужно решить уравнение −2·x−1=0 . Находим x=−1/2 .

Остается проверить, не является ли найденное число −1/2 посторонним корнем исходного уравнения. Для этого можно сделать проверку или найти ОДЗ переменной x исходного уравнения. Продемонстрируем оба подхода.

Начнем с проверки. Подставляем в исходное уравнение вместо переменной x число −1/2 , получаем , что то же самое, −1=−1 . Подстановка дает верное числовое равенство, поэтому, x=−1/2 является корнем исходного уравнения.

Теперь покажем, как последний пункт алгоритма выполняется через ОДЗ. Областью допустимых значений исходного уравнения является множество всех чисел, кроме −1 и 0 (при x=−1 и x=0 обращаются в нуль знаменатели дробей). Найденный на предыдущем шаге корень x=−1/2 принадлежит ОДЗ, следовательно, x=−1/2 является корнем исходного уравнения.

Ответ:

−1/2 .

Рассмотрим еще пример.

Пример.

Найдите корни уравнения .

Решение.

Нам требуется решить дробно рациональное уравнение, пройдем все шаги алгоритма.

Во-первых, переносим слагаемое из правой части в левую, получаем .

Во-вторых, преобразуем выражение, образовавшееся в левой части: . В результате приходим к уравнению x=0 .

Его корень очевиден – это нуль.

На четвертом шаге остается выяснить, не является ли найденный корень посторонним для исходного дробно рационального уравнения. При его подстановке в исходное уравнение получается выражение . Очевидно, оно не имеет смысла, так как содержит деление на нуль. Откуда заключаем, что 0 является посторонним корнем. Следовательно, исходное уравнение не имеет корней.

7 , что приводит к уравнению . Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно из правой части, то есть, . Теперь вычитаем из обеих частей тройки: . По аналогии , откуда , и дальше .

Проверка показывает, что оба найденных корня являются корнями исходного дробного рационального уравнения.

Ответ:

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.

А сегодня рациональные неравенства не все могут решать. Точнее, решать могут не только лишь все. Мало кто может это делать.
Кличко

Этот урок будет жёстким. Настолько жёстким, что до конца его дойдут лишь Избранные. Поэтому перед началом чтения рекомендую убрать от экранов женщин, кошек, беременных детей и...

Да ладно, на самом деле всё просто. Допустим, вы освоили метод интервалов (если не освоили — рекомендую вернуться и прочитать) и научились решать неравенства вида $P\left(x \right) \gt 0$, где $P\left(x \right)$ — какой-нибудь многочлен или произведение многочленов.

Полагаю, что для вас не составит труда решить, например, вот такую дичь (кстати, попробуйте для разминки):

\[\begin{align} & \left(2{{x}^{2}}+3x+4 \right)\left(4x+25 \right) \gt 0; \\ & x\left(2{{x}^{2}}-3x-20 \right)\left(x-1 \right)\ge 0; \\ & \left(8x-{{x}^{4}} \right){{\left(x-5 \right)}^{6}}\le 0. \\ \end{align}\]

Теперь немного усложним задачу и рассмотрим не просто многочлены, а так называемые рациональные дроби вида:

где $P\left(x \right)$ и $Q\left(x \right)$ — всё те же многочлены вида ${{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{0}}$, либо произведение таких многочленов.

Это и будет рациональное неравенство. Принципиальным моментом является наличие переменной $x$ в знаменателе. Например, вот это — рациональные неравенства:

\[\begin{align} & \frac{x-3}{x+7} \lt 0; \\ & \frac{\left(7x+1 \right)\left(11x+2 \right)}{13x-4}\ge 0; \\ & \frac{3{{x}^{2}}+10x+3}{{{\left(3-x \right)}^{2}}\left(4-{{x}^{2}} \right)}\ge 0. \\ \end{align}\]

А это — не рациональное, а самое обычное неравенство, которое решается методом интервалов:

\[\frac{{{x}^{2}}+6x+9}{5}\ge 0\]

Забегая вперёд, сразу скажу: существует как минимум два способа решения рациональных неравенств, но все они так или иначе сводятся к уже известному нам методу интервалов. Поэтому прежде чем разбирать эти способы, давайте вспомним старые факты, иначе толку от нового материла не будет никакого.

Что уже нужно знать

Важных фактов не бывает много. Действительно потребуются нам всего четыре.

Формулы сокращённого умножения

Да, да: они будут преследовать нас на протяжении всей школьной программы математики. И в университете тоже. Этих формул довольно много, но нам потребуются лишь следующие:

\[\begin{align} & {{a}^{2}}\pm 2ab+{{b}^{2}}={{\left(a\pm b \right)}^{2}}; \\ & {{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right); \\ & {{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right); \\ & {{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right). \\ \end{align}\]

Обратите внимание на последние две формулы — это сумма и разность кубов (а не куб суммы или разности!). Их легко запомнить, если заметить, что знак в первой скобке совпадает со знаком в исходном выражении, а во второй — противоположен знаку исходного выражения.

Линейные уравнения

Это самые простые уравнения вида $ax+b=0$, где $a$ и $b$ — это обычные числа, причём $a\ne 0$. Такое уравнение решается просто:

\[\begin{align} & ax+b=0; \\ & ax=-b; \\ & x=-\frac{b}{a}. \\ \end{align}\]

Отмечу, что мы имеем право делить на коэффициент $a$, ведь $a\ne 0$. Это требование вполне логично, поскольку при $a=0$ мы получим вот что:

Во-первых, в этом уравнении нет переменной $x$. Это, вообще говоря, не должно нас смущать (такое случается, скажем, в геометрии, причём довольно часто), но всё же перед нами уже не линейное уравнение.

Во-вторых, решение этого уравнения зависит исключительно от коэффициента $b$. Если $b$ — тоже ноль, то наше уравнение имеет вид $0=0$. Данное равенство верно всегда; значит, $x$ — любое число (обычно это записывается так: $x\in \mathbb{R}$). Если же коэффициент $b$ не равен нулю, то равенство $b=0$ никогда не выполняется, т.е. ответов нет (записывается $x\in \varnothing $ и читается «множество решений пусто»).

Чтобы избежать всех этих сложностей, просто полагают $a\ne 0$, что нисколько не ограничивает нас в дальнейших размышлениях.

Квадратные уравнения

Напомню, что квадратным уравнением называется вот это:

Здесь слева многочлен второй степени, причём снова $a\ne 0$ (в противном случае вместо квадратного уравнения мы получим линейное). Решаются такие уравнения через дискриминант:

  1. Если $D \gt 0$, мы получим два различных корня;
  2. Если $D=0$, то корень будет один, но второй кратности (что это за кратность и как её учитывать — об этом чуть позже). Либо можно сказать, что уравнение имеет два одинаковых корня;
  3. При $D \lt 0$ корней вообще нет, а знак многочлена $a{{x}^{2}}+bx+c$ при любом $x$ совпадает со знаком коэффициента $a$. Это, кстати, очень полезный факт, о котором почему-то забывают рассказать на уроках алгебры.

Сами корни считаются по всем известной формуле:

\[{{x}_{1,2}}=\frac{-b\pm \sqrt{D}}{2a}\]

Отсюда, кстати, и ограничения на дискриминант. Ведь квадратный корень из отрицательного числа не существует. По поводу корней у многих учеников жуткая каша в голове, поэтому я специально записал целый урок: что такое корень в алгебре и как его считать — очень рекомендую почитать .:)

Действия с рациональными дробями

Всё, что было написано выше, вы и так знаете, если изучали метод интервалов. А вот то, что мы разберём сейчас, не имеет аналогов в прошлом — это совершенно новый факт.

Определение. Рациональная дробь — это выражение вида

\[\frac{P\left(x \right)}{Q\left(x \right)}\]

где $P\left(x \right)$ и $Q\left(x \right)$ — многочлены.

Очевидно, что из такой дроби легко получить неравенство — достаточно лишь приписать знак «больше» или «меньше» справа. И чуть дальше мы обнаружим, что решать такие задачи — одно удовольствие, там всё очень просто.

Проблемы начинаются тогда, когда в одном выражении находятся несколько таких дробей. Их приходится приводить к общему знаменателю — и именно в этот момент допускается большое количество обидных ошибок.

Поэтому для успешного решения рациональных уравнений необходимо твёрдо усвоить два навыка:

  1. Разложение многочлена $P\left(x \right)$ на множители;
  2. Собственно, приведение дробей к общему знаменателю.

Как разложить многочлен на множители? Очень просто. Пусть у нас есть многочлена вида

Приравниваем его к нулю. Получим уравнение $n$-й степени:

\[{{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{1}}x+{{a}_{0}}=0\]

Допустим, мы решили это уравнение и получили корни ${{x}_{1}},\ ...,\ {{x}_{n}}$ (не пугайтесь: в большинстве случаев этих корней будет не более двух). В таком случае наш исходный многочлен можно переписать так:

\[\begin{align} & P\left(x \right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{1}}x+{{a}_{0}}= \\ & ={{a}_{n}}\left(x-{{x}_{1}} \right)\cdot \left(x-{{x}_{2}} \right)\cdot ...\cdot \left(x-{{x}_{n}} \right) \end{align}\]

Вот и всё! Обратите внимание: старший коэффициент ${{a}_{n}}$ никуда не исчез — он будет отдельным множителем перед скобками, и при необходимости его можно внести в любую из этих скобок (практика показывает, что при ${{a}_{n}}\ne \pm 1$ среди корней почти всегда есть дроби).

Задача. Упростите выражение:

\[\frac{{{x}^{2}}+x-20}{x-4}-\frac{2{{x}^{2}}-5x+3}{2x-3}-\frac{4-8x-5{{x}^{2}}}{x+2}\]

Решение. Для начала посмотрим на знаменатели: все они — линейные двучлены, и раскладывать на множители тут нечего. Поэтому давайте разложим на множители числители:

\[\begin{align} & {{x}^{2}}+x-20=\left(x+5 \right)\left(x-4 \right); \\ & 2{{x}^{2}}-5x+3=2\left(x-\frac{3}{2} \right)\left(x-1 \right)=\left(2x-3 \right)\left(x-1 \right); \\ & 4-8x-5{{x}^{2}}=-5\left(x+2 \right)\left(x-\frac{2}{5} \right)=\left(x+2 \right)\left(2-5x \right). \\\end{align}\]

Обратите внимание: во втором многочлене старший коэффициент «2» в полном соответствии с нашей схемой сначала оказался перед скобкой, а затем был внесён в первую скобку, поскольку там вылезла дробь.

То же самое произошло и в третьем многочлене, только там ещё и порядок слагаемых перепутан. Однако коэффициент «−5» в итоге оказался внесён во вторую скобку (помните: вносить множитель можно в одну и только в одну скобку!), что избавило нас от неудобств, связанных с дробными корнями.

Что касается первого многочлена, там всё просто: его корни ищутся либо стандартно через дискриминант, либо по теореме Виета.

Вернёмся к исходному выражению и перепишем его с разложенными на множители числителями:

\[\begin{matrix} \frac{\left(x+5 \right)\left(x-4 \right)}{x-4}-\frac{\left(2x-3 \right)\left(x-1 \right)}{2x-3}-\frac{\left(x+2 \right)\left(2-5x \right)}{x+2}= \\ =\left(x+5 \right)-\left(x-1 \right)-\left(2-5x \right)= \\ =x+5-x+1-2+5x= \\ =5x+4. \\ \end{matrix}\]

Ответ: $5x+4$.

Как видите, ничего сложного. Немного математики 7—8 класса — и всё. Смысл всех преобразований в том и состоит, чтобы получить из сложного и страшного выражения что-нибудь простое, с чем легко работать.

Однако так будет не всегда. Поэтому сейчас мы рассмотрим более серьёзную задачу.

Но сначала разберёмся с тем, как привести две дроби к общему знаменателю. Алгоритм предельно прост:

  1. Разложить на множители оба знаменателя;
  2. Рассмотреть первый знаменатель и добавить к нему множители, имеющиеся во втором знаменателе, однако отсутствующие в первом. Полученное произведение и будет общим знаменателем;
  3. Выяснить, каких множителей не хватает каждой из исходных дробей, чтобы знаменатели стали равны общему.

Возможно, этот алгоритм вам покажется просто текстом, в котором «много букв». Поэтому разберём всё на конкретном примере.

Задача. Упростите выражение:

\[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Решение. Такие объёмные задачи лучше решать по частям. Выпишем то, что стоит в первой скобке:

\[\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2}\]

В отличие от предыдущей задачи, тут со знаменателями всё не так просто. Разложим на множители каждый из них.

Квадратный трёхчлен ${{x}^{2}}+2x+4$ на множители не раскладывается, поскольку уравнение ${{x}^{2}}+2x+4=0$ не имеет корней (дискриминант отрицательный). Оставляем его без изменений.

Второй знаменатель — кубический многочлен ${{x}^{3}}-8$ — при внимательном рассмотрении является разностью кубов и легко раскладывается по формулам сокращённого умножения:

\[{{x}^{3}}-8={{x}^{3}}-{{2}^{3}}=\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)\]

Больше ничего разложить на множители нельзя, поскольку в первой скобке стоит линейный двучлен, а во второй — уже знакомая нам конструкция, которая не имеет действительных корней.

Наконец, третий знаменатель представляет собой линейный двучлен, который нельзя разложить. Таким образом, наше уравнение примет вид:

\[\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}-\frac{1}{x-2}\]

Совершенно очевидно, что общим знаменателем будет именно $\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)$, и для приведения к нему всех дробей необходимо первую дробь домножить на $\left(x-2 \right)$, а последнюю — на $\left({{x}^{2}}+2x+4 \right)$. Затем останется лишь привести подобные:

\[\begin{matrix} \frac{x\cdot \left(x-2 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}-\frac{1\cdot \left({{x}^{2}}+2x+4 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}= \\ =\frac{x\cdot \left(x-2 \right)+\left({{x}^{2}}+8 \right)-\left({{x}^{2}}+2x+4 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}= \\ =\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}= \\ =\frac{{{x}^{2}}-4x+4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}. \\ \end{matrix}\]

Обратите внимание на вторую строчку: когда знаменатель уже общий, т.е. вместо трёх отдельных дробей мы написали одну большую, не стоит сразу избавляться от скобок. Лучше напишите лишнюю строчку и отметьте, что, скажем, перед третьей дробью стоял минус — и он никуда не денется, а будет «висеть» в числителе перед скобкой. Это избавит вас от множества ошибок.

Ну и в последней строчке полезно разложить на множители числитель. Тем более что это точный квадрат, и нам на помощь вновь приходят формулы сокращённого умножения. Имеем:

\[\frac{{{x}^{2}}-4x+4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Теперь точно так же разберёмся со второй скобкой. Тут я просто напишу цепочку равенств:

\[\begin{matrix} \frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x}=\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}-\frac{2}{2-x}= \\ =\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}+\frac{2}{x-2}= \\ =\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}+\frac{2\cdot \left(x+2 \right)}{\left(x-2 \right)\cdot \left(x+2 \right)}= \\ =\frac{{{x}^{2}}+2\cdot \left(x+2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}. \\ \end{matrix}\]

Возвращаемся к исходной задачи и смотрим на произведение:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

Ответ: \[\frac{1}{x+2}\].

Смысл этой задачи такой же, как и у предыдущей: показать, насколько могут упрощаться рациональные выражения, если подойти к их преобразованию с умом.

И вот теперь, когда вы всё это знаете, давайте перейдём к основной теме сегодняшнего урока — решению дробно-рациональных неравенств. Тем более что после такой подготовки сами неравенства вы будете щёлкать как орешки.:)

Основной способ решения рациональных неравенств

Существует как минимум два подхода к решению рациональных неравенств. Сейчас мы рассмотрим один из них — тот, который является общепринятым в школьном курсе математики.

Но для начала отметим важную деталь. Все неравенства делятся на два типа:

  1. Строгие: $f\left(x \right) \gt 0$ или $f\left(x \right) \lt 0$;
  2. Нестрогие: $f\left(x \right)\ge 0$ или $f\left(x \right)\le 0$.

Неравенства второго типа легко сводятся к первому, а также уравнению:

Это небольшое «дополнение» $f\left(x \right)=0$ приводит к такой неприятной штуке как закрашенные точки — мы познакомились с ними ещё в методе интервалов. В остальном никаких отличий между строгими и нестрогими неравенствами нет, поэтому давайте разберём универсальный алгоритм:

  1. Собрать все ненулевые элементы с одной стороны от знака неравенства. Например, слева;
  2. Привести все дроби к общему знаменателю (если таких дробей окажется несколько), привести подобные. Затем по возможности разложить на числитель и знаменатель на множители. Так или иначе мы получим неравенство вида $\frac{P\left(x \right)}{Q\left(x \right)}\vee 0$, где «галочка» — знак неравенства.
  3. Приравниваем числитель к нулю: $P\left(x \right)=0$. Решаем это уравнение и получаем корни ${{x}_{1}}$, ${{x}_{2}}$, ${{x}_{3}}$, ... Затем требуем, чтобы знаменатель был не равен нулю: $Q\left(x \right)\ne 0$. Разумеется, по сути приходится решить уравнение $Q\left(x \right)=0$, и мы получим корни $x_{1}^{*}$, $x_{2}^{*}$, $x_{3}^{*}$, ... (в настоящих задачах таких корней вряд ли будет больше трёх).
  4. Отмечаем все эти корни (и со звёздочками, и без) на единой числовой прямой, причём корни без звёзд закрашены, а со звёздами — выколоты.
  5. Расставляем знаки «плюс» и «минус», выбираем те интервалы, которые нам нужны. Если неравенство имеет вид $f\left(x \right) \gt 0$, то в ответ пойдут интервалы, отмеченные «плюсом». Если $f\left(x \right) \lt 0$, то смотрим на интервалы с «минусами».

Практика показывает, что наибольшие трудности вызывают пункты 2 и 4 — грамотные преобразования и правильная расстановка чисел в порядке возрастания. Ну, и на последнем шаге будьте предельно внимательны: мы всегда расставляем знаки, опираясь на самое последнее неравенство, записанное перед переходом к уравнениям . Это универсальное правило, унаследованное ещё от метода интервалов.

Итак, схема есть. Давайте потренируемся.

Задача. Решите неравенство:

\[\frac{x-3}{x+7} \lt 0\]

Решение. Перед нами строгое неравенство вида $f\left(x \right) \lt 0$. Очевидно, пункты 1 и 2 из нашей схемы уже выполнены: все элементы неравенства собраны слева, к общему знаменателю ничего приводить не надо. Поэтому переходим сразу к третьему пункту.

Приравниваем к нулю числитель:

\[\begin{align} & x-3=0; \\ & x=3. \end{align}\]

И знаменатель:

\[\begin{align} & x+7=0; \\ & {{x}^{*}}=-7. \\ \end{align}\]

В этом месте многие залипают, ведь по идее нужно записать $x+7\ne 0$, как того требует ОДЗ (на ноль делить нельзя, вот это вот всё). Но ведь в дальнейшем мы будем выкалывать точки, пришедшие из знаменателя, поэтому лишний раз усложнять свои выкладки не стоит — пишите везде знак равенства и не парьтесь. Никто за это баллы не снизит.:)

Четвёртый пункт. Отмечаем полученные корни на числовой прямой:

Все точки выколоты, поскольку неравенство — строгое

Обратите внимание: все точки выколоты, поскольку исходное неравенство строгое . И тут уже неважно: из числителя эти точки пришли или из знаменателя.

Ну и смотрим знаки. Возьмём любое число ${{x}_{0}} \gt 3$. Например, ${{x}_{0}}=100$ (но с тем же успехом можно было взять ${{x}_{0}}=3,1$ или ${{x}_{0}}=1\ 000\ 000$). Получим:

Итак, справа от всех корней у нас положительная область. А при переходе через каждый корень знак меняется (так будет не всегда, но об это позже). Поэтому переходим к пятому пункту: расставляем знаки и выбираем нужное:

Возвращаемся к последнему неравенству, которое было перед решением уравнений. Собственно, оно совпадает с исходным, ведь никаких преобразований в этой задаче мы не выполняли.

Поскольку требуется решить неравенство вида $f\left(x \right) \lt 0$, я заштриховал интервал $x\in \left(-7;3 \right)$ — он единственный отмечен знаком «минус». Это и есть ответ.

Ответ: $x\in \left(-7;3 \right)$

Вот и всё! Разве сложно? Нет, не сложно. Правда, и задачка была лёгкая. Сейчас чуть усложним миссию и рассмотрим более «навороченное» неравенство. При его решении я уже не буду давать столь подробных выкладок — просто обозначу ключевые моменты. В общим, оформим его так, как оформляли бы на самостоятельной работе или экзамене.:)

Задача. Решите неравенство:

\[\frac{\left(7x+1 \right)\left(11x+2 \right)}{13x-4}\ge 0\]

Решение. Это нестрогое неравенство вида $f\left(x \right)\ge 0$. Все ненулевые элементы собраны слева, разных знаменателей нет. Переходим к уравнениям.

Числитель:

\[\begin{align} & \left(7x+1 \right)\left(11x+2 \right)=0 \\ & 7x+1=0\Rightarrow {{x}_{1}}=-\frac{1}{7}; \\ & 11x+2=0\Rightarrow {{x}_{2}}=-\frac{2}{11}. \\ \end{align}\]

Знаменатель:

\[\begin{align} & 13x-4=0; \\ & 13x=4; \\ & {{x}^{*}}=\frac{4}{13}. \\ \end{align}\]

Не знаю, что за извращенец составлял эту задачу, но корни получились не очень: их будет трудно расставить на числовой прямой. И если с корнем ${{x}^{*}}={4}/{13}\;$ всё более-менее ясно (это единственное положительное число — оно будет справа), то ${{x}_{1}}=-{1}/{7}\;$ и ${{x}_{2}}=-{2}/{11}\;$ требуют дополнительного исследования: какое из них больше?

Выяснить это можно, например, так:

\[{{x}_{1}}=-\frac{1}{7}=-\frac{2}{14} \gt -\frac{2}{11}={{x}_{2}}\]

Надеюсь, не нужно объяснять, почему числовая дробь $-{2}/{14}\; \gt -{2}/{11}\;$? Если нужно, рекомендую вспомнить, как выполнять действия с дробями .

А мы отмечаем все три корня на числовой прямой:

Точки из числителя закрашены, из знаменателя — выколоты

Расставляем знаки. Например, можно взять ${{x}_{0}}=1$ и выяснить знак в этой точке:

\[\begin{align} & f\left(x \right)=\frac{\left(7x+1 \right)\left(11x+2 \right)}{13x-4}; \\ & f\left(1 \right)=\frac{\left(7\cdot 1+1 \right)\left(11\cdot 1+2 \right)}{13\cdot 1-4}=\frac{8\cdot 13}{9} \gt 0. \\\end{align}\]

Последним неравенством перед уравнениями было $f\left(x \right)\ge 0$, поэтому нас интересует знак «плюс».

Получили два множества: один — обычный отрезок, а другой — открытый луч на числовой прямой.

Ответ: $x\in \left[ -\frac{2}{11};-\frac{1}{7} \right]\bigcup \left(\frac{4}{13};+\infty \right)$

Важное замечание по поводу чисел, которые мы подставляем для выяснения знака на самом правом интервале. Совершенно необязательно подставлять число, близкое к самому правому корню. Можно брать миллиарды или даже «плюс-бесконечность» — в этом случае знак многочлена стоящего в скобке, числителе или знаменателе, определяется исключительно знаком старшего коэффициента.

Давайте ещё раз посмотрим на функцию $f\left(x \right)$ из последнего неравенства:

В её записи присутствуют три многочлена:

\[\begin{align} & {{P}_{1}}\left(x \right)=7x+1; \\ & {{P}_{2}}\left(x \right)=11x+2; \\ & Q\left(x \right)=13x-4. \end{align}\]

Все они являются линейными двучленами, и у всех старшие коэффициенты (числа 7, 11 и 13) положительны. Следовательно, при подстановке очень больших чисел сами многочлены тоже будут положительны.:)

Это правило может показаться чрезмерно сложным, но только поначалу, когда мы разбираем совсем лёгкие задачи. В серьёзных неравенствах подстановка «плюс-бесконечности» позволит нам выяснить знаки намного быстрее, нежели стандартное ${{x}_{0}}=100$.

Мы очень скоро столкнёмся с такими задачами. Но сначала разберём альтернативный способ решения дробно-рациональных неравенств.

Альтернативный способ

Этот приём мне подсказала одна из моих учениц. Сам я никогда им не пользовался, однако практика показала, что многим ученикам действительно удобнее решать неравенства именно таким способом.

Итак, исходные данные те же. Нужно решить дробно-рациональное неравенство:

\[\frac{P\left(x \right)}{Q\left(x \right)} \gt 0\]

Давайте подумаем: чем многочлен $Q\left(x \right)$ «хуже» многочлена $P\left(x \right)$? Из-за чего нам приходится рассматривать отдельные группы корней (со звёздочкой и без), думать о выколотых точках и т.д.? Всё просто: у дроби есть область определения, согласной которой дробь имеет смысл только тогда, когда её знаменатель отличен от нуля.

В остальном никаких отличий между числителем и знаменателем не прослеживается: мы так же приравниваем его к нулю, ищем корни, затем отмечаем их на числовой прямой. Так почему бы не заменить дробную черту (фактически — знак деления) обычным умножением, а все требования ОДЗ прописать в виде отдельного неравенства? Например, так:

\[\frac{P\left(x \right)}{Q\left(x \right)} \gt 0\Rightarrow \left\{ \begin{align} & P\left(x \right)\cdot Q\left(x \right) \gt 0, \\ & Q\left(x \right)\ne 0. \\ \end{align} \right.\]

Обратите внимание: такой подход позволит свести задачу к методу интервалов, но при этом нисколько не усложнит решение. Ведь всё равно мы будем приравнивать многочлен $Q\left(x \right)$ к нулю.

Давайте посмотрим, как это работает на реальных задачах.

Задача. Решите неравенство:

\[\frac{x+8}{x-11} \gt 0\]

Решение. Итак, переходим к методу интервалов:

\[\frac{x+8}{x-11} \gt 0\Rightarrow \left\{ \begin{align} & \left(x+8 \right)\left(x-11 \right) \gt 0, \\ & x-11\ne 0. \\ \end{align} \right.\]

Первое неравенство решается элементарно. Просто приравниваем каждую скобку к нулю:

\[\begin{align} & x+8=0\Rightarrow {{x}_{1}}=-8; \\ & x-11=0\Rightarrow {{x}_{2}}=11. \\ \end{align}\]

Со вторым неравенством тоже всё просто:

Отмечаем точки ${{x}_{1}}$ и ${{x}_{2}}$ на числовой прямой. Все они выколоты, поскольку неравенство строгое:

Правая точка оказалась выколотой дважды. Это нормально.

Обратите внимание на точку $x=11$. Получается, что она «дважды выколота»: с одной стороны, мы выкалываем её из-за строгости неравенства, с другой — из-за дополнительного требования ОДЗ.

В любом случае, это будет просто выколотая точка. Поэтому расставляем знаки для неравенства $\left(x+8 \right)\left(x-11 \right) \gt 0$ — последнего, которое мы видели перед тем, как начали решать уравнения:

Нас интересуют положительные области, поскольку мы решаем неравенство вида $f\left(x \right) \gt 0$ — их и закрасим. Осталось лишь записать ответ.

Ответ. $x\in \left(-\infty ;-8 \right)\bigcup \left(11;+\infty \right)$

На примере этого решения хотел бы предостеречь вас от распространённой ошибки среди начинающих учеников. А именно: никогда не раскрывайте скобки в неравенствах! Наоборот, старайтесь всё разложить на множители — это упростит решение и избавит вас от множества проблем.

Теперь попробуем кое-что посложнее.

Задача. Решите неравенство:

\[\frac{\left(2x-13 \right)\left(12x-9 \right)}{15x+33}\le 0\]

Решение. Это нестрогое неравенство вида $f\left(x \right)\le 0$, поэтому здесь нужно внимательно следить за закрашенными точками.

Переходим к методу интервалов:

\[\left\{ \begin{align} & \left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)\le 0, \\ & 15x+33\ne 0. \\ \end{align} \right.\]

Переходим к уравнению:

\[\begin{align} & \left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)=0 \\ & 2x-13=0\Rightarrow {{x}_{1}}=6,5; \\ & 12x-9=0\Rightarrow {{x}_{2}}=0,75; \\ & 15x+33=0\Rightarrow {{x}_{3}}=-2,2. \\ \end{align}\]

Учитываем дополнительное требование:

Отмечаем все полученные корни на числовой прямой:

Если точка одновременно и выколота, и закрашена, она считается выколотой

Опять две точки «накладываются» друг на друга — это нормально, так будет всегда. Важно лишь понимать, что точка, отмеченная одновременно выколотой и закрашенной, на самом деле является выколотой. Т.е. «выкалывание» — более сильное действие, чем «закрашивание».

Это абсолютно логично, ведь выкалыванием мы отмечаем точки, которые влияют на знак функции, но сами не участвуют в ответе. И если в какой-то момент число перестаёт нас устраивать (например, не попадает в ОДЗ), мы вычёркиваем его из рассмотрения до самого конца задачи.

В общем, хватит философствовать. Расставляем знаки и закрашиваем те интервалы, которые отмечены знаком «минус»:

Ответ. $x\in \left(-\infty ;-2,2 \right)\bigcup \left[ 0,75;6,5 \right]$.

И снова хотел обратить ваше внимание вот на это уравнение:

\[\left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)=0\]

Ещё раз: никогда не раскрывайте скобки в таких уравнениях! Вы только усложните себе задачу. Помните: произведение равно нулю, когда хотя бы один из множителей равен нулю. Следовательно, данное уравнение просто «разваливается» на несколько более мелких, которые мы и решали в предыдущей задаче.

Учёт кратности корней

Из предыдущих задач легко заметить, что наибольшую сложность представляют именно нестрогие неравенства, потому как в них приходится следить за закрашенными точками.

Но в мире есть ещё большее зло — это кратные корни в неравенствах. Тут уже приходится следить не за какими-то там закрашенными точками — тут знак неравенства может внезапно не поменяться при переходе через эти самые точки.

Ничего подобного мы в этом уроке ещё не рассматривали (хотя аналогичная проблема часто встречалась в методе интервалов). Поэтому введём новое определение:

Определение. Корень уравнения ${{\left(x-a \right)}^{n}}=0$ равен $x=a$ и называется корнем $n$-й кратности.

Собственно, нас не особо интересует точное значение кратности. Важно лишь то, чётным или нечётным является это самое число $n$. Потому что:

  1. Если $x=a$ — корень чётной кратности, то знак функции при переходе через него не меняется;
  2. И наоборот, если $x=a$ — корень нечётной кратности, то знак функции поменяется.

Частным случаем корня нечётной кратности являются все предыдущие задачи, рассмотренные в этом уроке: там везде кратность равна единице.

И ещё. Перед тем, как мы начнём решать задачи, хотел бы обратить ваше внимание на одну тонкость, которая покажется очевидной для опытного ученика, но вгоняет в ступор многих начинающих. А именно:

Корень кратности $n$ возникает только в том случае, когда в эту степень возводится всё выражение: ${{\left(x-a \right)}^{n}}$, а никак не $\left({{x}^{n}}-a \right)$.

Ещё раз: скобка ${{\left(x-a \right)}^{n}}$ даёт нам корень $x=a$ кратности $n$, а вот скобка $\left({{x}^{n}}-a \right)$ или, как часто бывает, $(a-{{x}^{n}})$ даёт нам корень (или два корня, если $n$ — чётное) первой кратности вне зависимости от того, чему равно $n$.

Сравните:

\[{{\left(x-3 \right)}^{5}}=0\Rightarrow x=3\left(5k \right)\]

Здесь всё чётко: вся скобка возводилась в пятую степень, поэтому на выходе мы получили корень пятой степени. А теперь:

\[\left({{x}^{2}}-4 \right)=0\Rightarrow {{x}^{2}}=4\Rightarrow x=\pm 2\]

Мы получили два корня, но оба они имеют первую кратность. Или вот ещё:

\[\left({{x}^{10}}-1024 \right)=0\Rightarrow {{x}^{10}}=1024\Rightarrow x=\pm 2\]

И пусть вас не смущает десятая степень. Главное, что 10 — это чётное число, поэтому на выходе имеем два корня, и оба они вновь имеют первую кратность.

В общем будьте внимательны: кратность возникает только тогда, когда степень относится ко всей скобке, а не только к переменной .

Задача. Решите неравенство:

\[\frac{{{x}^{2}}{{\left(6-x \right)}^{3}}\left(x+4 \right)}{{{\left(x+7 \right)}^{5}}}\ge 0\]

Решение. Попробуем решить её альтернативным способом — через переход от частного к произведению:

\[\left\{ \begin{align} & {{x}^{2}}{{\left(6-x \right)}^{3}}\left(x+4 \right)\cdot {{\left(x+7 \right)}^{5}}\ge 0, \\ & {{\left(x+7 \right)}^{5}}\ne 0. \\ \end{align} \right.\]

Разбираемся с первым неравенством методом интервалов:

\[\begin{align} & {{x}^{2}}{{\left(6-x \right)}^{3}}\left(x+4 \right)\cdot {{\left(x+7 \right)}^{5}}=0; \\ & {{x}^{2}}=0\Rightarrow x=0\left(2k \right); \\ & {{\left(6-x \right)}^{3}}=0\Rightarrow x=6\left(3k \right); \\ & x+4=0\Rightarrow x=-4; \\ & {{\left(x+7 \right)}^{5}}=0\Rightarrow x=-7\left(5k \right). \\ \end{align}\]

Дополнительно решаем второе неравенство. На самом деле мы уже решали его, но чтобы проверяющие не придрались к решению, лучше решить его ещё раз:

\[{{\left(x+7 \right)}^{5}}\ne 0\Rightarrow x\ne -7\]

Обратите внимание: никаких кратностей в последнем неравенстве нет. В самом деле: какая разница, сколько раз вычёркивать точку $x=-7$ на числовой прямой? Хоть один раз, хоть пять — результат будет один и тот же: выколотая точка.

Отметим всё, что мы получили, на числовой прямой:

Как я и говорил, точка $x=-7$ в итоге будет выколота. Кратности расставлены исходя из решения неравенства методом интервалов.

Осталось расставить знаки:

Поскольку точка $x=0$ является корнем чётной кратности, знак при переходе через неё не меняется. Остальные точки имеют нечётную кратность, и с ними всё просто.

Ответ. $x\in \left(-\infty ;-7 \right)\bigcup \left[ -4;6 \right]$

Ещё раз обратите внимание на $x=0$. Из-за чётной кратности возникает интересный эффект: слева от неё всё закрашено, справа — тоже, да и сама точка вполне себе закрашена.

Как следствие, её не нужно обособлять при записи ответа. Т.е. не надо писать что-нибудь в духе $x\in \left[ -4;0 \right]\bigcup \left[ 0;6 \right]$ (хотя формально такой ответ тоже будет правильным). Вместо этого сразу пишем $x\in \left[ -4;6 \right]$.

Такие эффекты возможны только при корнях чётной кратности. И в следующей задаче мы столкнёмся с обратным «проявлением» этого эффекта. Готовы?

Задача. Решите неравенство:

\[\frac{{{\left(x-3 \right)}^{4}}\left(x-4 \right)}{{{\left(x-1 \right)}^{2}}\left(7x-10-{{x}^{2}} \right)}\ge 0\]

Решение. В этот раз пойдём по стандартной схеме. Приравниваем к нулю числитель:

\[\begin{align} & {{\left(x-3 \right)}^{4}}\left(x-4 \right)=0; \\ & {{\left(x-3 \right)}^{4}}=0\Rightarrow {{x}_{1}}=3\left(4k \right); \\ & x-4=0\Rightarrow {{x}_{2}}=4. \\ \end{align}\]

И знаменатель:

\[\begin{align} & {{\left(x-1 \right)}^{2}}\left(7x-10-{{x}^{2}} \right)=0; \\ & {{\left(x-1 \right)}^{2}}=0\Rightarrow x_{1}^{*}=1\left(2k \right); \\ & 7x-10-{{x}^{2}}=0\Rightarrow x_{2}^{*}=5;\ x_{3}^{*}=2. \\ \end{align}\]

Поскольку мы решаем нестрогое неравенство вида $f\left(x \right)\ge 0$, корни из знаменателя (которые со звёздочками) будут выколоты, а из числителя — закрашены.

Расставляем знаки и штрихуем области, отмеченные «плюсом»:

Точка $x=3$ — изолированная. Это часть ответа

Перед тем, как записать окончательный ответ, внимательно посмотрим на картинку:

  1. Точка $x=1$ имеет чётную кратность, но сама выколота. Следовательно, её придётся обособить в ответе: нужно записать $x\in \left(-\infty ;1 \right)\bigcup \left(1;2 \right)$, а никак не $x\in \left(-\infty ;2 \right)$.
  2. Точка $x=3$ тоже имеет чётную кратность и при этом закрашена. Расстановка знаков свидетельствует, что сама точка нас устраивает, но шаг влево-вправо — и мы попадаем в область, которая нас точно не устраивает. Такие точки называются изолированными и записываются в виде $x\in \left\{ 3 \right\}$.

Объединяем все полученные кусочки в общее множество и записываем ответ.

Ответ: $x\in \left(-\infty ;1 \right)\bigcup \left(1;2 \right)\bigcup \left\{ 3 \right\}\bigcup \left[ 4;5 \right)$

Определение. Решить неравенство — значит найти множество всех его решений , либо доказать, что это множество пусто.

Казалось бы: что тут может быть непонятны? Да в том-то и дело, что множества можно задавать по-разному. Давайте ещё раз выпишем ответ к последней задаче:

Читаем буквально, что написано. Переменная «икс» принадлежит некому множеству, которое получается объединением (значок «U») четырёх отдельных множеств:

  • Интервал $\left(-\infty ;1 \right)$, который буквально означает «все числа, меньшие единицы, но не сама единица»;
  • Интервал $\left(1;2 \right)$, т.е. «все числа в пределах от 1 до 2, но не сами числа 1 и 2»;
  • Множество $\left\{ 3 \right\}$, состоящее из одного-единственного числа — тройки;
  • Интервал $\left[ 4;5 \right)$, содержащий все числа в пределах от 4 до 5, а также саму четвёрку, но не пятёрку.

Интерес здесь представляет третий пункт. В отличие от интервалов, которые задают бесконечные наборы чисел и лишь обозначают лишь границы этих наборов, множество $\left\{ 3 \right\}$ задаёт строго одно число путём перечисления.

Чтобы понять, что мы именно перечисляем конкретные числа, входящие в множество (а не задаём границы или что-либо ещё), используются фигурные скобки. Например, запись $\left\{ 1;2 \right\}$ означает именно «множество, состоящее из двух чисел: 1 и 2», но никак не отрезок от 1 до 2. Ни в коем случае не путайте эти понятия.

Правило сложения кратностей

Ну и в заключение сегодняшнего урока немного жести от Павла Бердова.:)

Внимательные ученики уже наверняка задались вопросом: а что будет, если в числителе и знаменателе обнаружатся одинаковые корни? Так вот, работает следующее правило:

Кратности одинаковых корней складываются. Всегда. Даже если этот корень встречается и в числителе, и в знаменателе.

Иногда лучше решать, чем говорить. Поэтому решаем следующую задачу:

Задача. Решите неравенство:

\[\frac{{{x}^{2}}+6x+8}{\left({{x}^{2}}-16 \right)\left({{x}^{2}}+9x+14 \right)}\ge 0\]

\[\begin{align} & {{x}^{2}}+6x+8=0 \\ & {{x}_{1}}=-2;\ {{x}_{2}}=-4. \\ \end{align}\]

Пока ничего особенного. Приравниваем к нулю знаменатель:

\[\begin{align} & \left({{x}^{2}}-16 \right)\left({{x}^{2}}+9x+14 \right)=0 \\ & {{x}^{2}}-16=0\Rightarrow x_{1}^{*}=4;\ x_{2}^{*}=-4; \\ & {{x}^{2}}+9x+14=0\Rightarrow x_{3}^{*}=-7;\ x_{4}^{*}=-2. \\ \end{align}\]

Обнаружены два одинаковых корня: ${{x}_{1}}=-2$ и $x_{4}^{*}=-2$. Оба имеют первую кратность. Следовательно заменяем их одним корнем $x_{4}^{*}=-2$, но уже с кратностью 1+1=2.

Кроме того, есть ещё одинаковые корни: ${{x}_{2}}=-4$ и $x_{2}^{*}=-4$. Они тоже первой кратности, поэтому останется лишь $x_{2}^{*}=-4$ кратности 1+1=2.

Обратите внимание: в обоих случаях мы оставили именно «выколотый» корень, а «закрашенный» выкинули из рассмотрения. Потому что ещё в начале урока договорились: если точка одновременно и выколотая, и закрашенная, то мы всё равно считаем её выколотой.

В итоге у нас есть четыре корня, причём все оказались выколоты:

\[\begin{align} & x_{1}^{*}=4; \\ & x_{2}^{*}=-4\left(2k \right); \\ & x_{3}^{*}=-7; \\ & x_{4}^{*}=-2\left(2k \right). \\ \end{align}\]

Отмечаем их на числовой прямой с учётом кратности:

Расставляем знаки и закрашиваем интересующие нас области:

Всё. Никаких изолированных точек и прочих извращений. Можно записывать ответ.

Ответ. $x\in \left(-\infty ;-7 \right)\bigcup \left(4;+\infty \right)$.

Правило умножения кратностей

Иногда встречается ещё более неприятная ситуация: уравнение, имеющее кратные корни, само возводится в некоторую степень. При этом меняются кратности всех исходных корней.

Такое встречается редко, поэтому большинство учеников не имеют опыта решения подобных задач. А правило здесь следующее:

При возведении уравнения в степень $n$ кратности всех его корней тоже увеличиваются в $n$ раз.

Другими словами, возведение в степень приводит к умножению кратностей на эту же степень. Рассмотрим это правило на примере:

Задача. Решите неравенство:

\[\frac{x{{\left({{x}^{2}}-6x+9 \right)}^{2}}{{\left(x-4 \right)}^{5}}}{{{\left(2-x \right)}^{3}}{{\left(x-1 \right)}^{2}}}\le 0\]

Решение. Приравниваем к нулю числитель:

Произведение равно нулю, когда хотя бы один из множителей равен нулю. С первым множителем всё понятно: $x=0$. А вот дальше начинаются проблемы:

\[\begin{align} & {{\left({{x}^{2}}-6x+9 \right)}^{2}}=0; \\ & {{x}^{2}}-6x+9=0\left(2k \right); \\ & D={{6}^{3}}-4\cdot 9=0 \\ & {{x}_{2}}=3\left(2k \right)\left(2k \right) \\ & {{x}_{2}}=3\left(4k \right) \\ \end{align}\]

Как видим, уравнение ${{x}^{2}}-6x+9=0$ имеет единственный корень второй кратности: $x=3$. Затем всё это уравнение возводится в квадрат. Следовательно, кратность корня составит $2\cdot 2=4$, что мы в итоге и записали.

\[{{\left(x-4 \right)}^{5}}=0\Rightarrow x=4\left(5k \right)\]

Со знаменателем тоже никаких проблем:

\[\begin{align} & {{\left(2-x \right)}^{3}}{{\left(x-1 \right)}^{2}}=0; \\ & {{\left(2-x \right)}^{3}}=0\Rightarrow x_{1}^{*}=2\left(3k \right); \\ & {{\left(x-1 \right)}^{2}}=0\Rightarrow x_{2}^{*}=1\left(2k \right). \\ \end{align}\]

В сумме у нас получилось пять точек: две выколотых и три закрашенных. Совпадающих корней в числителе и знаменателе не наблюдается, поэтому просто отмечаем их на числовой прямой:

Расставляем знаки с учётом кратностей и закрашиваем интересующие нас интервалы:

Снова одна изолированная точка и одна выколотая

Из-за корней чётной кратности вновь получили парочку «нестандартных» элементов. Это $x\in \left[ 0;1 \right)\bigcup \left(1;2 \right)$, а никак не $x\in \left[ 0;2 \right)$, а также изолированная точка $x\in \left\{ 3 \right\}$.

Ответ. $x\in \left[ 0;1 \right)\bigcup \left(1;2 \right)\bigcup \left\{ 3 \right\}\bigcup \left[ 4;+\infty \right)$

Как видите, всё не так сложно. Главное — внимательность. Последний раздел этого урока посвящён преобразованиям — тем самым, которые мы обсуждали в самом начале.

Предварительные преобразования

Неравенства, которые мы разберём в этом разделе, нельзя назвать сложными. Однако в отличие от предыдущих задач здесь придётся применить навыки из теории рациональных дробей — разложение на множители и приведение к общему знаменателю.

Мы детально обсуждали этот вопрос в самом начале сегодняшнего урока. Если вы не уверены, что понимаете, о чём речь — настоятельно рекомендую вернуться и повторить. Потому что нет никакого смысла зубрить методы решения неравенств, если вы «плаваете» в преобразовании дробей.

В домашней работе, кстати, тоже будет много подобных задач. Они вынесены в отдельный подраздел. И там вас ждут весьма нетривиальные примеры. Но это будет в домашке, а сейчас давайте разберём парочку таких неравенств.

Задача. Решите неравенство:

\[\frac{x}{x-1}\le \frac{x-2}{x}\]

Решение. Переносим всё влево:

\[\frac{x}{x-1}-\frac{x-2}{x}\le 0\]

Приводим к общему знаменателю, раскрываем скобки, приводим подобные слагаемые в числителе:

\[\begin{align} & \frac{x\cdot x}{\left(x-1 \right)\cdot x}-\frac{\left(x-2 \right)\left(x-1 \right)}{x\cdot \left(x-1 \right)}\le 0; \\ & \frac{{{x}^{2}}-\left({{x}^{2}}-2x-x+2 \right)}{x\left(x-1 \right)}\le 0; \\ & \frac{{{x}^{2}}-{{x}^{2}}+3x-2}{x\left(x-1 \right)}\le 0; \\ & \frac{3x-2}{x\left(x-1 \right)}\le 0. \\\end{align}\]

Теперь перед нами классическое дробно-рациональное неравенство, решение которого уже не представляет трудности. Предлагаю решить его альтернативным методом — через метод интервалов:

\[\begin{align} & \left(3x-2 \right)\cdot x\cdot \left(x-1 \right)=0; \\ & {{x}_{1}}=\frac{2}{3};\ {{x}_{2}}=0;\ {{x}_{3}}=1. \\ \end{align}\]

Не забываем ограничение, пришедшее из знаменателя:

Отмечаем все числа и ограничения на числовой прямой:

Все корни имеют первую кратность. Никаких проблем. Просто расставляем знаки и закрашиваем нужные нам области:

Это всё. Можно записывать ответ.

Ответ. $x\in \left(-\infty ;0 \right)\bigcup \left[ {2}/{3}\;;1 \right)$.

Разумеется, это был совсем уж просто пример. Поэтому сейчас рассмотрим задачу посерьёзнее. И кстати, уровень этой задачи вполне соответствует самостоятельным и контрольным работам по этой теме в 8 классе.

Задача. Решите неравенство:

\[\frac{1}{{{x}^{2}}+8x-9}\ge \frac{1}{3{{x}^{2}}-5x+2}\]

Решение. Переносим всё влево:

\[\frac{1}{{{x}^{2}}+8x-9}-\frac{1}{3{{x}^{2}}-5x+2}\ge 0\]

Перед тем как приводить обе дроби к общему знаменателю, разложим эти знаменатели на множители. Вдруг вылезут одинаковы скобки? С первым знаменателем легко:

\[{{x}^{2}}+8x-9=\left(x-1 \right)\left(x+9 \right)\]

Со вторым чуть сложнее. Не стесняйтесь вносить множитель-константу в ту скобку, где обнаружилась дробь. Помните: исходный многочлен имел целые коэффициенты, поэтому велика вероятность, что и разложение на множители будет иметь целые коэффициенты (на самом деле так будет всегда, за исключением случаев, когда дискриминант иррационален).

\[\begin{align} & 3{{x}^{2}}-5x+2=3\left(x-1 \right)\left(x-\frac{2}{3} \right)= \\ & =\left(x-1 \right)\left(3x-2 \right) \end{align}\]

Как видим, есть общая скобка: $\left(x-1 \right)$. Возвращаемся к неравенству и приводим обе дроби к общему знаменателю:

\[\begin{align} & \frac{1}{\left(x-1 \right)\left(x+9 \right)}-\frac{1}{\left(x-1 \right)\left(3x-2 \right)}\ge 0; \\ & \frac{1\cdot \left(3x-2 \right)-1\cdot \left(x+9 \right)}{\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)}\ge 0; \\ & \frac{3x-2-x-9}{\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)}\ge 0; \\ & \frac{2x-11}{\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)}\ge 0; \\ \end{align}\]

Приравниваем к нулю знаменатель:

\[\begin{align} & \left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)=0; \\ & x_{1}^{*}=1;\ x_{2}^{*}=-9;\ x_{3}^{*}=\frac{2}{3} \\ \end{align}\]

Никаких кратностей и совпадающих корней. Отмечаем четыре числа на прямой:

Расставляем знаки:

Записываем ответ.

Ответ: $x\in \left(-\infty ;-9 \right)\bigcup \left({2}/{3}\;;1 \right)\bigcup \left[ 5,5;+\infty \right)$.

Всё! Лайк тому, то дочитал до этой строчки.:)

Дробным уравнением называется уравнение, в котором хотя бы одно из слагаемых - дробь, в знаменателе которой присутствует неизвестное. Например, дробным уравнением является уравнение .

Решать дробные уравнения удобно в следующем порядке:

  • найти общий знаменатель дробей, входящих в уравнение, если каждая дробь имеет смысл,
  • заменить данное уравнение целым, умножив обе его часть на общий знаменатель,
  • решить получившееся целое уравнение,
  • исключить из его корней те, которые обращают в нуль общий знаменатель.

Пример 1. Решить дробное уравнение:

Решение. Воспользуемся основным свойством дроби с представим левую и правую части этого уравнения в виде дробей с одинаковым знаменателем:

.

Эти дроби равны при тех и только тех значениях, при которых равны их числители, а знаменатель отличен от нуля. Если знаменатель равен нулю, то дроби, а следовательно, и уравнение не имеет смысла.

Таким образом, чтобы найти корни данного уравнения, нужно решить уравнение

Упростив уравнение (раскрыв скобки и приведя подобные члены), получим квадратное уравнение

.

При решении квадратного уравнения получаем его корни:

.

Найденные корни не обращают знаменатель в нуль, поэтому они являются корнями исходного дробного уравнения.

Пример 2. Решить дробное уравнение:

.

Решение. Найдём общий знаменатель дробей, входящих в данное дробное уравнение. Общий знаменатель -

Заменим исходное уравнение целым. Для этого умножим обе его части на общий знаменатель. Получим:

Выполним необходимые преобразования в полученном уравнении и придём к квадратному уравнению

Решенив квадратное уравнение , получаем его корни:

Если x = -3 , то найденный на первом шаге знаменатель обращается в нуль:

,

то же самое, если x = 3 .

Следовательно, числа -3 и 3 не являются корнями исходного уравнения, а, поскольку никакие другие корни не найдены, данное уравнение не имеет решения.

Пример 3. Решить дробное уравнение:

.

Решение. Найдём общий знаменатель дробей, входящих в данное уравнение. Для этого знаменатели дробей разложим на множители:

.

Общий знаменатель - выражение

Заменим исходное уравнение целым, умножив обе его части на общий знаменатель. Получим:

Выполнив преобразования, придём к квадратному уравнению

.

Решенив квадратное уравнение , получаем его корни:

.

Ни один из корней не обращает общий знаменатель в нуль. Следовательно, числа -4 и 9 - корни данного уравнения.

Пример 4. Решить дробное уравнение:

.

Решение. Введём новую переменную, обозначив . Получим уравнение с переменной y .